М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
svyatkin111
svyatkin111
15.05.2022 11:48 •  Математика

Сколькими нулями оканчивается произведение всех натуральных чисел : от 1 до 10 включительно от 15 до 24 включительно от 10 до 30 включительно от 1 до 100 включительно ? сделайте с объяснениями ^_^

👇
Ответ:
kerimagaevakk
kerimagaevakk
15.05.2022
От 1-10 =1 нулей,15-24=1нулей,10-30=3 нулей ,1-100=11нулей
4,5(86 оценок)
Открыть все ответы
Ответ:
Dangssa
Dangssa
15.05.2022
S = v * t - формула пути
s = 390 (км) - расстояние между городами
v = 70 +  х (км/ч) - скорость сближения
t = 4 (ч) - время в пути
Подставим все значения в формулу и решим уравнение:
(70 + х) * 4 = 390
70 + х = 390 : 4
70 + х = 97,5 
х = 97,5 - 70
х = 27,5 (км/ч) - скорость второго автомобиля

по действиям)
1) 70 * 4 = 280 (км) - проехал первый автомобиль за 4 часа;
2) 390 - 280 = 110 (км) - проехал второй автомобиль за 4 часа;
3) 110 : 4 = 27,5 (км/ч) - скорость второго автомобиля.
Выражение: (390 - 70 * 4) : 4 = 27,5
ответ: 27,5 км/ч.
4,4(27 оценок)
Ответ:
Зейна12
Зейна12
15.05.2022

Дана функция у = 2х² - х⁴.

1.Область определения функции: x ∈ R, или -∞ < x < ∞.

2. Нули функции. Точки пересечения графика функции с осью ОХ.

2х² - х⁴ = 0, х²(2 - х²) = 0. Тогда х² = 0 и (или) 2 - х² = 0.

x₁ = 0.

x₂ = √2.

х₃ = -√2.

Точки пересечения графика функции с осью ОУ при х = 0 ⇒ у = 0.

3. Промежутки знакопостоянства функции.

Для нахождения промежутков знакопостоянства функции y=f(x) надо решить неравенства f(x)>0, f(x)<0.

По пункту 2 имеем 4 промежутка значений аргумента, в которых функция сохраняет знак:

(−∞;−√2), (−√2;0), (0;√2), (√2;+∞).

Для того, чтобы определить знак функции на каждом из этих промежутков, надо найти значение функции в произвольной точке из каждого промежутка. Точки выбираются из соображений удобства вычислений.

x = -2 -1 1 2

y = -8 1 1 -8.

В промежутках (−∞;−√2) и (√2;+∞) функция принимает отрицательные значения, в промежутках (−√2;0) и (0;√2) функция принимает положительные значения.

4. Симметрия графика (чётность или нечётность функции).

Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).

Итак, проверяем:

- x^{4} + 2 x^{2} = - x^{4} + 2 x^{2}

- Да

- x^{4} + 2 x^{2} = - -1 x^{4} - 2 x^{2}

- Нет

Значит, функция является чётной.

5. Периодичность графика - нет.

6.Точки разрыва, поведение функции в окрестностях точек разрыва, вертикальные асимптоты - нет.

7. Интервалы монотонности функции, точки экстремумов, значения функции в точках экстремумов.

Находим производную заданной функции:

y' = 4x - 4x³.

Приравниваем производную нулю: 4x - 4x³ = 4x(1 - x²) = 0,

4x = 0, x = 0.

x² = 1, х = 1, x = -1.

Критических точек три: х = 0, х = 1, x = -1.

Находим значения производной левее и правее от критических.

x = -2 -1 -0.5 0 0.5 1 2

y' = 24 0 -1.5 0 1.5 0 -24.

Где производная положительна - функция возрастает, где отрицательна - там убывает.

Убывает на промежутках (-oo, -1] U [0, oo).

Возрастает на промежутках (-oo, 0] U [1, oo).

8. Интервалы выпуклости, точки перегиба.

Найдем точки перегибов, для этого надо решить уравнение

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0

(вторая производная равняется нулю),

корни полученного уравнения будут точками перегибов для указанного графика функции:

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0.

Вторая производная 4 \left(- 3 x^{2} + 1\right) = 0.

Решаем это уравнение.

Корни этого уравнения:

x_{1} = - \frac{\sqrt{3}}{3}

x_{2} = \frac{\sqrt{3}}{3}

Интервалы выпуклости и вогнутости:

Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:

Вогнутая на промежутках [-sqrt(3)/3, sqrt(3)/3].

Выпуклая на промежутках (-oo, -sqrt(3)/3] U [sqrt(3)/3, oo).

9. Поведение функции в бесконечности. Наклонные (в частности, горизонтальные) асимптоты - нет.

10. Дополнительные точки, позволяющие более точно построить график.

11. Построение графика функции - дан в приложении.

4,5(53 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ