1.найдите 4 поседовательных натуральных числа, если их сумма равна 306? 2.турист за 4 дня 92 км, при чем каждый последующий день он проходил на 2 км меньше чем предыдущий, сколько км турист в последний день?
1)75, 76, 77, 78 75+76+77+78=306 2)в первый день км, во второй день x-2 км, в третий день x-4, в четвертый день x-6 92=x+x-2+x-4+x-6 92=4x-12 4x=104 x=26, т.к. Последний день он км, 26-6=20 км ответ:20 км
Если исходить из классического определения луча, как геометрического множества точек прямой, лежащих по одну сторону от данной точки, и рассматривая данную задачу для лучей, лежащих на одной плоскости α, то 1) непересекающиеся лучи (не имеющие общих точек) должны быть параллельны друг другу, могут быть однонаправленными или разнонаправленными, и построить их можно бесконечное (математически) множество - пример на прилагаемом рис обозначен красным цветом; 2) пересекающиеся под прямым углом лучи будут иметь общую точку O, причём угол между ними будет составлять 90° и построить таких лучей также можно беконечное множество - пример на прилагаемом рис обозначен зелёным цветом.
Полная поверхность шара радиусом R = 10 см равна S(ш) = 4Pi*R^2 = 4Pi*10^2 = 400Pi кв. см.При высверливании отверстия радиусом r = 6 см получаем: пропадают 2 шаровых сегмента высотой h = 2 см и добавляется внутренняя боковая поверхность цилиндра радиусом r = 6 см и высотой H = 16 см.Если ты нарисуешь шар с вырезанным цилиндром, то поймешь, что радиус цилиндра, половина его высоты и радиус шара составляют прямоугольный треугольник с катетом 6 см и гипотенузой 10 см.По т. Пифагора второй катет, то есть половина высоты цилиндра, равен 8 см. Значит, сегмент имеет высоту 2 см.Площадь шарового сегмента равна S(сег) = 2Pi*R*h = 2Pi*10*2 = 40Pi кв.см.Площадь боковой поверхности внутреннего цилиндраS(ц) = 2Pi*r*H = 2Pi*6*16 = 192Pi кв.см.Полная площадь поверхности равнаS = S(ш) - 2S(сег) + S(ц) = 400Pi - 80Pi + 192Pi = 512Pi кв.см.