М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Даша222000111777
Даша222000111777
23.01.2020 06:38 •  Математика

В) скорость катера 28км/ч. успеет ли он за 7ч пройти 200км?

👇
Ответ:
sentyakovv
sentyakovv
23.01.2020
7*28=196 (км).
ответ:Катер не успеет пройти за 7 ч 200 км.
4,6(72 оценок)
Ответ:
FarLime
FarLime
23.01.2020
Нет,потому что если найти расстояние за которое он пройдет за 7 часов то 28*7=196 км
За 7 часов он пройдет 196 км
4,4(69 оценок)
Открыть все ответы
Ответ:
Монтер111
Монтер111
23.01.2020

Формулы для оценки абсолютной погрешности произведения и частного является более сложными, чем для суммы и разности. Поэтому для частного и произведения абсолютные погрешности обычно определяют, используя известную формулу



,


для a = x1x2...xn или a = x1/x2, где относительная погрешность произведения приближенных чисел определяется следующим образом:


Формула показывает, что относительные погрешности нескольких приближенных чисел складываются при выполнении операции умножения над этими числами.


Для предельной относительной погрешности формула имеет вид:


Аналогичным образом можно получить оценки погрешности частного двух приближенных чисел:



;



Погрешность функции

Основная задача теории погрешностей заключается в следующем: по известным значениям погрешностей исходных данных определить погрешность некоторой функции от этих величин.



Пусть задана функция f(x), значение которой требуется вычислить для приближенного значения аргумента , имеющего известную предельную абсолютную погрешность . Если функция f(x) дифференцируема в точке x0, то погрешность ее значения в этой точке можно оценить как


погрешность вычислительный приближенный функция



.


Считается, что формула справедлива, если относительные ошибки аргумента и результата малы по сравнению с единицей, т.е.


x0 << 1 и f(x0) << 1.


Нетрудно заметить, что вычисление функции в точке с большим модулем производной может привести к значительному увеличению погрешности результата по сравнению с погрешностью аргумента (катастрофическая потеря точности).


Погрешность функции нескольких переменных

 

Пусть y = f(x1, x2, …, xn) - приближенное значение функции от приближенных аргументов, , …, , которые имеют абсолютные ошибки , , …, .



Для определения используют принцип наложения ошибок, согласно которому учитывают влияние погрешностей каждого из аргументов в отдельности, а затем полученные погрешности суммируют. Для этого вначале временно предполагают, что все аргументы, кроме x1 являются точными числами, и находится соответствующая частная ошибка, вносимая только погрешностью этого аргумента :



,


где производная определяется по x1. Затем вычисляется частная ошибка, вносимая аргументом :



.


В итоге искомая погрешность функции , определяется суммой всех частных ошибок:



.


Условиями применимости этой формулы считается выполнение следующих неравенств:


xi << 1 (i = ); f(x1, x2, …, xn) << 1.


Обратная задача теории погрешностей

Обратная задача теории погрешностей заключается в определении погрешностей исходных данных по заданной погрешности результата. С использованием понятия функции нескольких переменных эта задача формулируются следующим образом: определить предельные погрешности аргументов функции, чтобы погрешность функции в целом не превышала бы заданной величины.


Эта задача является математически неопределенной, так как одна и та же погрешность результата может быть получена при разных погрешностях исходных данных. В простейшем случае для решения этой задачи используют принцип равных влияний, согласно которому в формуле для определения предельной абсолютной погрешности функции нескольких аргументов вида



.


все слагаемые из правой части принимаются равными:



Отсюда значения предельных абсолютных погрешностей аргументов определяются следующим образом:

4,8(29 оценок)
Ответ:
fkireeva
fkireeva
23.01.2020

1.рациональное, физиологически обоснованное чередование периодов работы и отдыха, при котором достигается наибольшая работо без ущерба для здоровья.

2.Сон, принимание пищи, чистка зубов, прибывание на свежем воздухе

3.Если хочешь все успевать и быть здоровым, режим дня необходимо соблюдать

4. Тишина, отсутствие тревоги, удобная температура

5.1. Инсомния — бессонница, нарушения процесса засыпания и сна.

Психосоматическая — связанная с психологическим состоянием, может быть ситуативная (временная) или постоянная  Вызванная приемом алкоголя или медикаментозных препаратов: хронический алкоголизм;

4,6(40 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ