Рассмотрим все пятицифровые наборы, которые заканчиваются четной цифрой {0,2,4}. Последнюю цифру выбираем 3-мя предпоследнюю - 4-мя, третью - 3-мя, вторую - 2-мя, первую - одним, итого 1⋅2⋅3⋅4⋅3=72. Среди этих наборов запрещенными есть наборы, начинающиеся с нуля, т.е. 0∗∗∗∗. Первая цифра выбрана (одним последнюю цифру выбираем 2-мя из {2,4}. Уже выбраны две цифры, осталось три, поэтому вторую выбираем тремя третью цифру - двумя четвертую - одним, имеем 1⋅3⋅2⋅1⋅2=12. Итого 72−12=60 чисел, удовлетворяющих условию задачи.
Пошаговое объяснение:
Рассмотрим все пятицифровые наборы, которые заканчиваются четной цифрой {0,2,4}. Последнюю цифру выбираем 3-мя предпоследнюю - 4-мя, третью - 3-мя, вторую - 2-мя, первую - одним, итого 1⋅2⋅3⋅4⋅3=72. Среди этих наборов запрещенными есть наборы, начинающиеся с нуля, т.е. 0∗∗∗∗. Первая цифра выбрана (одним последнюю цифру выбираем 2-мя из {2,4}. Уже выбраны две цифры, осталось три, поэтому вторую выбираем тремя третью цифру - двумя четвертую - одним, имеем 1⋅3⋅2⋅1⋅2=12. Итого 72−12=60 чисел, удовлетворяющих условию задачи.
Пошаговое объяснение:
Биномиальное распределение (распределение по схеме Бернулли) позволяет, в частности, установить, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов k (появлений события) имеет вид
Так как np−q=np+p−1, то эти границы отличаются на 1. Поэтому k, являющееся целым числом, может принимать либо одно значение, когда np целое число (k=np) , то есть когда np+p(а отсюда и np−q) нецелое число, либо два значения, когда np−q целое число.