(х-1)(х-2)(х+3)-(х+1)(х+2)(х-3)=(x^2-2x-x+2)(X+3)-(x^2+2X+X+2)(x-3)=x^3-3x+2X+3x^2-9x+6-(x^3+3X+2x-6x-3x-6=x^3-3x^2+2X+3x^2-9x+6-x^3-3x^2-2x+6X+3X+6=-3x^2+12 Можно решать дальше вот так -3x^2=-12 x^2=4 χ=+-2
Обыкновенная комбинаторика (если знаешь такую) Посмотрим: сколько цифр может стоять на 5 месте (предпоследняя цифра): всего 10 вариантов (все 10 цифр). Теперь посмотрим на последнюю цифру: для неё тоже 10 вариантов (10 цифр). Следовательно: 10*10=100 вариантов для лотерейного билета из шестизначного числа (если могут быть одинаковые цифры) Вот решение если все цифры в числе должны быть разными (в условии этого не указано, поэтому разбираю 2 варианта условия) Посмотрим, сколько вариантов есть для предпоследней (пятой) цифры. 1,2,3,4 - отпадают. Следовательно остаются только: 5,6,7,8,9,0 т. е. 6 вариантов. Теперь посмотрим на последнюю цифру: для нее всего 5 вариантов. Следовательно: 6*5=30 вариантов для лотерейных билетов.
Обыкновенная комбинаторика (если знаешь такую) Посмотрим: сколько цифр может стоять на 5 месте (предпоследняя цифра): всего 10 вариантов (все 10 цифр). Теперь посмотрим на последнюю цифру: для неё тоже 10 вариантов (10 цифр). Следовательно: 10*10=100 вариантов для лотерейного билета из шестизначного числа (если могут быть одинаковые цифры) Вот решение если все цифры в числе должны быть разными (в условии этого не указано, поэтому разбираю 2 варианта условия) Посмотрим, сколько вариантов есть для предпоследней (пятой) цифры. 1,2,3,4 - отпадают. Следовательно остаются только: 5,6,7,8,9,0 т. е. 6 вариантов. Теперь посмотрим на последнюю цифру: для нее всего 5 вариантов. Следовательно: 6*5=30 вариантов для лотерейных билетов.