М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
захра5566
захра5566
25.02.2023 11:19 •  Математика

Вмагазин 14 мешков гречневой крупы по 80 кг в каждом мешке и разложили1 в пакеты по 2 кг в каждый . сколько пакетов получилось?

👇
Ответ:
МАРИЯpahal
МАРИЯpahal
25.02.2023
1)80×14=1120 (КГ)разом важить;
2)1120÷2=560 (кг)в 1 мішку.
Відповідь:560кілограмів
4,6(42 оценок)
Открыть все ответы
Ответ:
Альтруизм. Добродетель выражает стремление человека к добру, стремление быть похожим на нравственную личность, которая является для него образцом. Таким образцом для подражания могут быть родители, учитель, друг, космонавты, полярники, военные, спортсмены, артисты, литературные персонажи (богатыри, мушкетёры, рыцари). Стараясь быть похожим на эти моральные образцы, человек учится быть добродетельным. Кроме того, добродетель — это и отдельное положительное качество человека. Например, трудолюбие, работо ответственность, дружелюбие, вежливость сопереживать, сочувствовать и т. п.
4,8(71 оценок)
Ответ:
вика3877
вика3877
25.02.2023
Пусть разложения вектора \overline{x} по векторам имеет вид:
        \overline{x}= \alpha\cdot \overline{p}+ \beta \cdot\overline{q}+\gamma \cdot \overline{r}

запишем это уравнение в векторной форме:

\{8;0;5\}= \alpha \cdot \{2;0;1\}+ \beta \cdot \{1;1;0\}+\gamma\cdot \{4;1;2\}\\ \\ \{8;0;5\}=\{2 \alpha ;0; \alpha \}+\{ \beta ; \beta ;0\}+\{4\gamma;\gamma;2\gamma\}

Чтобы найти сумму векторов, заданных своими координаты, необходимо просуммировать их соответствующие координаты

\{8;0;5\}=\{2 \alpha + \beta +4\gamma; \beta +\gamma; \alpha +2\gamma\}

Два вектора равны, если их соответствующие координаты равны, то есть, получаем следующую систему уравнений:
\displaystyle \begin{cases}
 & \text{ } 2 \alpha + \beta +4\gamma=8 \\ 
 & \text{ } \beta +\gamma=0 \\ 
 & \text{ } \alpha +2\gamma=5 
\end{cases}
Запишем эту систему в матричной форме и решим методом Гаусса.

\displaystyle \left(\begin{array}{ccc}2&1&4\\0&1&1\\1&0&2\end{array}\right \left|\begin{array}{ccc}8\\0\\5\end{array}\right)\sim\left(\begin{array}{ccc}1&0.5&2\\ 0&1&1\\ 1&0&2\end{array}\right \left|\begin{array}{ccc}4\\0\\5\end{array}\right)\sim\left(\begin{array}{ccc}1&0&1.5\\ 0&1&1\\0&-0.5&0\end{array}\right \left|\begin{array}{ccc}4\\0\\ 1\end{array}\right)\sim\\ \\ \\

\left(\begin{array}{ccc}1&0&1.5\\ 0&1&1\\ 0&0&0.5\end{array}\right \left|\begin{array}{ccc}4\\0\\1\end{array}\right)\sim\left(\begin{array}{ccc}1&0&1.5\\ 0&1&1\\0&0&1\end{array}\right \left|\begin{array}{ccc}4\\0\\2\end{array}\right)\sim\left(\begin{array}{ccc}1&0&0\\ 0&1&1\\ 0&0&1\end{array}\right \left|\begin{array}{ccc}1\\0\\2\end{array}\right)\sim

\left(\begin{array}{ccc}1&0&0\\0&1&0\\ 0&0&1\end{array}\right \left|\begin{array}{ccc}1\\-2\\2\end{array}\right)

Получаем решения данной системы уравнений с тремя переменными\begin{cases}
 & \text{ } \alpha =1 \\ 
 & \text{ } \beta =-2 \\ 
 & \text{ } \gamma=2 
\end{cases}



Следовательно, искомое разложение

                                                      \overline{x}= \overline{p}-2\overline{q}+2\overline{r}
4,4(90 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ