Если имеются 2 отрезка разной длины, то нельзя говорить об их пропорциональности, можно говорить только об отношении длин данных отрезков: |CD|/|AB|=k,которое выражается коэффициентом k.
Коэффициент k показывает, сколько раз отрезок |АВ| укладывается в отрезке |CD|.
Если к данным отрезкам добавить третий, то можно установить пропорциональность данных 3-х отрезков, но только в случае, если отрезок |EF|/|CD|=|CD|/|AB|=k. То есть, отрезок |EF| относится к отрезку |CD| такжe, как отрезок |CD| относится к отрезку AB|, и это отношение выражается через коэффициент k.
Например: |AB|=2: |CD|=4: |EF|=8 => 8/4=4/2=2, получилась пропорция с коэффициентом k=2.
Когда говорят, что отрезки |АВ| и |СD| пропорциональны отрезкам |А₁В₁| и |С₁D₁| - это значит, что их отношения равны.
Например: любая измерительная шкала (линейка) имеет бесконечное множество пропорциональных отрезков: 18/9=20/10=4/2=6/3... и тд. - отношения данных числовых отрезков равны и выражаются коэффициентом k=2 (18/9=2 и 6/3=2), то есть:
|АВ|/|СD| = |А₁В₁|/|С₁D₁|,при |АВ|=18; |СD|=9 и |А₁В₁|=6; |С₁D₁|=3
18/9=6/3.
Нет
Пошаговое объяснение:
Рассмотрим все цифри:
0, 2, 4, 5, 6, 8 - не могут быть этими цифрами, так как любое число, которое заканчивается на одно из них не будет простым
Остаётся 1, 3, 7, 9
Из них складываем пары чисел по три:
1, 3, 9 - выходят числа 139, 193, 319(не простое), 391(не простое), 913(не простое), 931(не простое). Значит, откидываем этот вариант
1, 3, 7 - 137, 173, 317, 371(не простое), 713(не простое), 731(не простое). Этот вариант тоже откидываем
1, 7, 9 - 179, 197, 719, 791(не простое), 917(не простое), 971. Не подходит
3, 7, 9 - 379, 397, 739, 793(не простое), 937, 973(не простое). И этот вариант тоже не подходит.
Значит, таких цифр не существует.
4у:8=17
4у=8*17
4у=136
у=136:4
у=34