М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Настечок
Настечок
19.12.2022 19:49 •  Математика

Как сделать фон.разбор слова

👇
Ответ:
IamHelp999
IamHelp999
19.12.2022
во-первых это надо было задавать в раздел русского, а во-вторых смотри и учись:
с[c]-согл.,глух.,твёрд.,парный
п[п]-согл.,глух.,твёрд.,парный
а[а]-гл.
с[с]-согл.,глух.,твёрд.,парный
а[а]-гл.
ю[й']-согл., звон., мягк., непарный
   [у] -гл.
т[т]-согл.,глух.,твёрд.,парный
Букв: 7
Звуков: 8
4,8(17 оценок)
Открыть все ответы
Ответ:
Fogles12
Fogles12
19.12.2022
1). Первое число.

Вначале сделаем некоторые упрощения (основные свойства корней и степеней, фактически никаких подсчетов):

\displaystyle 0,6^{\frac{1}{3} } \cdot 1,3 ^{- \frac{2}{5} } = \sqrt[3]{0,6^1} \cdot \frac{1}{1,3 ^ \frac{2}{5} } = \sqrt[3]{0,6} \cdot \frac{1}{ \sqrt[5]{1,3^2} } = \sqrt[3]{0,6} \cdot \sqrt[5]{\frac{1}{{1,3^2} } } =\\\\= \sqrt[15]{0,6^5} \cdot \sqrt[15]{\frac{1^3}{1,3^6 } } = \sqrt[15]{ \frac{0,6^5}{1,3^6} }

А теперь можно либо посчитать, что находится под корнем, либо избежать муторных вычислений и сразу сказать, что числитель меньше знаменателя, и дробь меньше единицы. Значит, и корень из такой дроби тоже меньше единицы.

Итог: число a \approx 0.759не подходит.

2). Второе число.

Расписываю менее подробно:

\displaystyle 0,7^{- \frac{2}{3} } \cdot 0,3^{- \frac{1}{5} } = \sqrt[3]{\frac{1}{0,7^2} } \cdot \sqrt[5]{\frac{1}{0,3^1} } = \sqrt[15]{\frac{1}{0,7^{10}} } \cdot \sqrt[15]{\frac{1}{0,3^3} } = \sqrt[15]{ \frac{1}{0,7^{10} \cdot 0,3^3} }

Очевидно, что знаменатель в подкоренном выражении меньше единицы, поэтому само подкоренное выражение больше единицы. И корень больше единицы.

Итог: число b \approx 1.614подходит.

3). Третье число.

И, наконец, последнее число:

\displaystyle 1,8^{\frac{1}{3} } \cdot 0,3^{-\frac{2}{5} } = \sqrt[3]{1,8} \cdot \sqrt[5]{\frac{1}{0,3^2} } = \sqrt[15]{1,8^5} \cdot \sqrt[15]{\frac{1}{0,3^6} } = \sqrt[15]{ \frac {1,8^5}{0,3^6} }

Здесь, опять, подкоренное выражение больше единицы (по вполне понятным причинам), так что и сам корень будет больше единицы.

Итог: число c \approx 1.968подходит.

ответ:  b и c.
4,5(29 оценок)
Ответ:
MaxXXL2003
MaxXXL2003
19.12.2022

Пошаговое объяснение:

1. Мы находимся в условиях "испытаний Бернулли", где "опытом" является выбор отдельной кошки, а "событием" - факт кражи еды данной кошкой. Число "опытов" по условию равно 243, вероятность p появления "события" в одном "опыте" равна p=3/4=0,75, вероятность непоявления события q=1-p=0,25. Тогда вероятность P того, что в серии из n=243 опытов событие появится m=122 раза, равна P=C(n,m)*p^m*q^(n-m), где C(n,m) - число сочетаний из n по m. Однако так как число "опытов" велико  и при этом произведение n*p*q>10, то для приближённого вычисления вероятности P можно использовать локальную формулу Лапласа:

P≈e^(-x²/2)/√(2*π*n*p*q), где x=(m-n*p)/√(n*p*q).

Подставляя в эту формулу известные данные, находим P≈0,0000000000000000003≈0.

2. Для вычисления вероятности P используем интегральную формулу Лапласа: P≈Ф(x2)-Ф(x1), где Ф(x) - функция Лапласа, x1=(m1-n*p)/√(n*p*q), x2=(m2-n*p)/√(n*p*q). Так как по условию m1=100 и m2=200, то, находя x1, x2 и вычисляя затем Ф(x1) и Ф(x2), находим P≈0,9957.

3. Задача решается аналогично задаче п.2. Меньше 180 кошек - это значит от 0 до 179 кошек, поэтому в данном случае m1=0 и m2=179. Находя  x1, x2 и вычисляя затем Ф(x1) и Ф(x2), находим P≈0,3151.

4. Задача также решается аналогично задаче п.2, только в данном случае m1=51 и m2=243. Находя  x1, x2 и вычисляя затем Ф(x1) и Ф(x2), находим P≈1.

 

4,4(40 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ