М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
настёна20055
настёна20055
10.08.2020 02:59 •  Математика

Не производя вычислений, выясните, какое из ниже выражений равно выражению 3891–2139–120 выберите правильный ответ: 3891–(2139+120) 3891+(2139+120) (3891+2139)−120 (3891–2139)+120 3891–(2139−120)

👇
Ответ:
Aleks0528
Aleks0528
10.08.2020
3891-2139-120=3891-(2139+120)
4,8(61 оценок)
Открыть все ответы
Ответ:
DaiDZ
DaiDZ
10.08.2020
Правило сравнения дробей с одинаковыми знаменателями: из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше, и меньше та дробь, числитель которой меньше.

Сравнение дробей с разными знаменателями можно свести к сравнению дробей с одинаковыми знаменателями. Для этого лишь нужно сравниваемые обыкновенные дроби привести к общему знаменателю. Итак, чтобы сравнить две дроби с разными знаменателями, нужно:
1. Привести дроби к общему знаменателю;
2. Сравнить полученные дроби с одинаковыми знаменателями.

Правило сравнения дробей с одинаковыми числителями: из двух дробей с одинаковыми числителями больше та, у которой меньше знаменатель, и меньше та дробь, знаменатель которой больше.

Сравнение обыкновенной дроби с натуральным числом сводится к сравнению двух дробей, если число записать в виде дроби со знаменателем 1 ( Например, число 9 можно представить как дробь 9/1 и т.д.)
4,4(86 оценок)
Ответ:
dgfhdhdj95
dgfhdhdj95
10.08.2020

Все четные числа кратны 2. Среди первых 1000 натуральных чисел четных и нечетных чисел поровну, т. е. количество и тех и других равно 1000/2 = 500. Нас интересуют все нечетные числа от 1 до 999. Их будет ровно 500. Далее, вторым условием является их некратность 5. В каждом десятке чисел 2 числа являются кратными 5. Т. к. 500 = 50*10, то у нас имеется 50 десятков и в каждом по два числа, кратных 5. Тогда число чисел не кратных ни 2, ни 5 будет 500 - 50*2 = 500 - 100 = 400. Добавим теперь условие некратности 3. В каждом десятке по три числа, кратных 3. У нас 400 чисел, т. е. 400 = 40*10 - 40 десятков. Среди них будет 40*3 = 120 чисел, кратных 3, значит всего чисел не кратных ни 2, ни 5, ни 3 будет 400 - 120 = 280.

ответ: 400 чисел некратных ни 2, ни 5 и 280 чисел некратных ни 2, ни 5, ни 3.

4,4(72 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ