Решение: Обозначим за х-количество пёстрых коров, а за у-количество бурых коров. Зная отношение пёстрых коров к бурым составим уравнение: 2 1/3:4=х/у или 7/3:4=х/у или 7/12=х/у и так как количество пёстрых коров меньше количества бурых коров на 15, составим второе уравнение: у-х=15 Решим систему уравнений: 7/12=х/у у-х=15 Из второго уравнения найдём у, у=15+х; Подставим данное у в первое уравнение: 7/12=х/(15+х) 7*(15+х)=12*х 105+7х=12х 12х-7х=105 5х=105 х=21 (количество пёстрых коров) у=21+15=36 (количество бурых коров) Всего коров в стаде: 21+36=57 коров
Если на чашки весов влезает 20 кг абрикос, то: Делим ящик на две части и уравновешиваем их на чашках весов. Получаем 2 раза по 20 кг. Одну часть откладываем в сторону, делим вторую часть еще на две части, уравновешивая их на весах. Получаем 2 по 10 кг. 10 кг откладываем, вторые 10 кг снова весами делим пополам. Получаем 2 по 5 кг. Откладываем обе части по 5 кг. На весы кладем отложенные 10 кг и из второго ящика отмеряем еще 10 на вторую чашку весов. Таким образом, мы отмерили следующее количество абрикосов: 20 кг; 2 по 10 кг и 2 по 5 кг Теперь нетрудно получить искомое количество абрикосов: 20 + 10 + 5 = 35 (кг) 10 + 5 = 15 (кг)