М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kot1810
kot1810
08.08.2020 15:11 •  Математика

Из пункта а в пункт в выехал автобус со скоростью 45км/ч, а через час за ним выехал автомобиль со скоростью 60км/ч. в пункт в автомобиль приехал на 30 мин. раньше автобуса. какое расстояние от а до в?

👇
Ответ:
люба1357
люба1357
08.08.2020
Допустим автобус пробыл в пути t часов. Тогда автомобиль был в пути на 1,5 часа меньше, т.е.: t-1,5 (это час который он простоял и 30 минут, на которые раньше приехал). Тогда путь, пройденный автобусом = 45t, а путь пройденный автомобилем = 60(t-1,5). Так как путь один и тот же, то можно приравнять
45t=60(t-1,5)
60t-45t= 90
15t=90
t=6 -часов был в пути автобус, путь = 6*45=270
проверка: автомобиль 60*4,5=270
4,5(52 оценок)
Открыть все ответы
Ответ:
45r77yf
45r77yf
08.08.2020

1.несократимая

2.сократимая

3.неправильная

4.правильная

5.да

6.сложить числители и знаменатели.

привести к общему знаменателю, а затем сложить числители и знаменатель будет равен знаменателю данных дробей.

сложить числители и знаменатель будет равен знаменателю данных дробей.

7.привести к общему знаменателю, затем вычесть числители, а знаменатель будет равен знаменателю данных дробей.

вычесть числители и знаменатели.

вычесть числители, а знаменатель будет равен знаменателю данных дробей.

Пошаговое объяснение:

4,5(43 оценок)
Ответ:
Гавхарчик
Гавхарчик
08.08.2020

(2;1+\sqrt{2})\cup(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty)

Пошаговое объяснение:

ОДЗ логарифмов: x > 0, x ≠ 1, x > 2, x ≠ 3 ⇒ x > 2, x ≠ 3

Пусть \log_{x}{(x-2)}=t. Тогда \log_{x-2}{x}=\dfrac{1}{\log_{x}{(x-2)}}=\dfrac{1}{t}:

\dfrac{4t+\frac{1}{t}-4}{4t+\frac{2}{t}+6}\geq 0. Заметим, что t ≠ 0, так как это значение достигается только при x = 3 (x - 2 = x⁰ = 1 ⇔ x = 3). Но при x = 3 основание логарифма \log_{x-2}{x} равно 1, что не удовлетворяет ОДЗ. Значит, домножим обе части дроби на t:

\dfrac{4t^2-4t+1}{4t^2+6t+2}\geq 0|\cdot 2\\\dfrac{4t^2-4t+1}{2t^2+3t+1}\geq 0\\\dfrac{(2t-1)^2}{(t+1)(2t+1)}\geq 0

Решим методом интервалов:

 +      -    +     +

----o----o----*---->

   -1    -¹/₂   ¹/₂  

t\in(-\infty;-1)\cup(-\frac{1}{2};+\infty)

\displaystyle\left [ {{\log_{x}{(x-2)}-\frac{1}{2}}} \right.

Заметим, что по ОДЗ x > 2, то есть основание логарифма всегда больше 1. Значит, на ОДЗ неравенства равносильны:

\displaystyle \left [ {{x-2x^{-\frac{1}{2}}}} \right. \left [ {{x-2\frac{1}{\sqrt{x}}}} \right. \left [ {{x^2-2x-10}} \right.

Первое неравенство имеет решение (с учётом ОДЗ) x\in(2;1+\sqrt{2})

Второе неравенство раскладывается на множители:

(\sqrt{x}+1)(\sqrt{x}^2-\sqrt{x}-1)0|:(\sqrt{x}+1)0\\\sqrt{x}^2-\sqrt{x}-10

Нули получившегося неравенства: \displaystyle \left [ {{\sqrt{x}=\frac{1-\sqrt{5}}{2}

C учётом ОДЗ получаем, что в данном случае x\in(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty) (левая граница меньше правой, так как √5 < 3).

Объединим промежутки. Сравним правую границу первого неравенства и левую границу второго. Сравним эти числа относительно 2,5:

1+\sqrt{2}\vee 2{,}5\Leftrightarrow\sqrt{2}\vee1{,}5\Leftrightarrow 24\\1+\sqrt{2}

Тогда промежутки не пересекаются, итоговый ответ: x\in(2;1+\sqrt{2})\cup(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty)

4,5(34 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ