На первой, третьей, пятой, седьмой неделях доступны для проведения занятия (нечётные числа) понедельник, среда, пятница, воскресенье. На второй, четвертой, шестой неделях доступны для проведения занятия вторник, четверг, суббота.
Варианты посчитаем так. Сначала распределим 7 занятий, а потом одно уберём.
4 занятия по 4 нечётным неделям можно распределить для занятия в понедельник есть 4 варианта недели, для среды - 3 (одна неделя уже занята), для пятницы - 2, для воскресенья - 1, всего 4 * 3 * 2 * 1 = 4!. 3 занятия по 3 нечётным неделям можно распределить Всего Убрать одно из семи занятий можно так что финальный ответ 7 * 3! * 4! = 1008.
Другой пусть нет занятия на нечётной неделе. Неделю с выходным можно выбрать выходной день недели - ещё затем на оставшиеся 3 дня 3 четных недель 3 занятия можно назначить 3! вариантами; на 3 дня 3 нечетных недель - тоже 3! вариантами. Если нет занятия на чётной неделе, то там выходную неделю можно выбрать выходной день недели - ещё осталось распределить 2 занятия по двум чётным неделям (2! вариантов) и 4 занятия по 4 нечётным неделям (4!). Всего 4 * 4 * 3! * 3! + 3 * 3 * 2! * 4! = 1008.
Задача 2 Обозначим число квартир в подъезде за n. Из условия следует, что квар-тиры с номерами 337и 364 находятся в одном подъезде. Следовательно, n не меньше числа квартир в этом списке, т. е. n > 364−337+1 = 28. Рассмотрим теперь какой-нибудь подъезд, лежащий между содержащими квартиры 504 и 533 подъездами (они по условию не соседние). В рассматриваемом подъезде номера всех квартир не меньше 505 и не больше 532, а значит n > 532 − 505 + 1 = 28. Таким образом, n = 28 — единственный возможный ответ.