Чтобы избавится от деления на 26 в левой части, необходимо обе части уравнения умножить на 26, тем самым в левой части они сократятся и получится h-23=8*26 h-23=208 h=208+23=231
Пусть многозначное число равно 10A + c, c — последняя цифра. После вычёркивания последней цифры получаем A, А — делитель числа 10А + с, тогда c делится на А. Если А > 9, то с = 0; при 1 <= c <= 9 c строго меньше A, поэтому с не может делиться на А.
Из этого получаем, что все числа, у которых есть шанс оказаться хорошими, имеют вид ab0000...0, причем a, b — не нули. Вычёркивание нулей удовлетворяет условию, проверяем вычёркивание a и b.
Вычеркивание a: ab0000...0 делится на a0000...0, значит, 10a + b делится на a, откуда b делится на a. Вычёркивание b: ab0000...0 делится на b0000...0, значит, 10a + b делится на b, откуда 10a делится на b.
b делится на a: обозначим b = ka, k — натуральное, не большее 9. 10a делится на b, значит, 10a делится на ka, k — делитель 10. Остаются варианты k = 1, 2 или 5.
k = 1: a = b, 9 вариантов (11... - 99...) k = 2: b = 2a, 4 варианта (12..., 24..., 36..., 48) k = 5: b = 5a, 1 вариант (15...)
На всякий случай,объясню,как раскладывать на простые множители) Берёшь таблицу простых чисел и по порядку делишь данное число на простые от 2 и далее,их можно повторять.Например,3 раза поделить на 2. Таким образом у 150 простые множители это 2,5,5 и 3 (две 5-ки,а не одна),у 180: 2,2,3,3,5,у 400:2,2,2,5,5 Наименьшее общее кратное я,если честно,уже не помню,как находить через множители,но я делаю так: беру наибольшее число,сначала проверяют кратно ли оно остальным,если да,то оно наименьшое кратное,если нет,то умножают его на 2 и опять проверяют,потом на 3 и т.д.,пока не найдётся оно) А здесь наименьшее общее кратное это 3600. Я надеюсь,я довольно доступно объяснила и больше у тебя проблем с этим не будет)
h-23=8*26
h-23=208
h=208+23=231