М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
rasgramorysergio5775
rasgramorysergio5775
01.04.2021 20:21 •  Математика

Скорость катера по течению реки 44км/ч а против течения 40км/ч какова скорость катера в стоячей воде?

👇
Ответ:
Для начала узнаем скорость по течению и против. Это называется средней скоростью:
1) 40+44=84 (км/ч) средняя скорость.
2) 84:2 =42 (км/ч) - в стоячей воде
4,7(56 оценок)
Открыть все ответы
Ответ:
xerobiriv
xerobiriv
01.04.2021
C математикой мы встречаемся везде, на каждом шагу, с утра и до вечера. Просыпаясь, мы смотрим на часы; в трамвае или троллейбусе нужно рассчитаться за проезд; чтобы сделать покупку в магазине, нужно снова выполнить денежные расчеты и т. д. Без математики нельзя было бы изучить ни физику, ни географию, ни черчение.
Летом мы все любим совершать различные походы по родному краю пешком или на плоту по реке. Разве не приходится и здесь делать расчеты? Если мы пошли в поход пешком, то нужно наметить маршрут по карте, измерить расстояние, а для этого нужно уметь пользоваться линейкой или каким-нибудь прибором, например курвиметром, нужно суметь вычислить длину маршрута, пользуясь масштабом. Но это еще не все. Необходимо произвести расчет продуктов, с тем чтобы не брать лишнего, чтобы питание было вкусное и разнообразное.
Если решим плыть на плоту по реке, нужно определить длину маршрута, его продолжительность, скорость течения реки. Как это узнать? На приходит математика. Даже в игре без математики трудно. Чтобы организовать спортивные игры в пионерском лагере, нужно суметь разметить спортивную площадку, для чего необходимо знание геометрии (построение прямых углов на местности, вешение прямых, измерение расстояний рулеткой и т. д.). Чтобы выиграть в военной игре, нужно хорошо ориентироваться по компасу, знать, как определить высоту дерева, расстояние до недоступного предмета, ширину реки и пр.
Мы живем в удивительное время: в нашей стране строятся гигантские электростанции и домны, автоматические заводы, построен атомный ледокол "Ленин", запускаются спутники и ракеты, тяжеловесные корабли штурмуют космическое пространство. Первый — Юрий Гагарин, а за ним целая плеяда героев-космонавтов облетели земной шар по космической трассе. Во всех этих делах нам всегда и математика.
Наши ученые и инженеры создали такие вычислительные машины, которые за одну секунду могут выполнить десятки и сотни тысяч арифметических действий, что и позволило в кратчайшие сроки проделать сложнейшие технические расчеты, связанные со строительством различных сооружений, с полетами наших ракет, спутников, управляемых космических станций, космических кораблей с советскими героями на борту.
Вычислительные машины не только освобождают человека от утомительных и однообразных операций (одна такая машина может заменить армию вычислителей в несколько десятков тысяч человек), не только ускоряют процесс вычислений, но и, это самое главное, могут управлять различными процессами производства, транспортом. Вычислительные машины настолько совершенны, что их часто называют "думающими". Это не случайно, ибо они могут быть использованы для переводов с одного языка на другой, могут играть в шахматы, причем достаточно успешно (об этом можно судить хотя бы по тому, что известный американский гроссмейстер Решевский в партии с вычислительной машиной смог добиться только ничьей). Но и всем этим их возможности не исчерпаны. С полным основанием можно сказать, что практические приложения математики не ограничены.
Значит, математика нам нужна всюду: в магазине, в школе, в походе и в игре,в жизни.
Почитай может мне очень Но сочинение чуть чуть на другую тему было
4,6(91 оценок)
Ответ:
Юмилия
Юмилия
01.04.2021
Треугольник ABCABC является остроугольным, так как 62<42+5262<42+52. Отсюда следует, что основания высот находятся на сторонах, а не на их продолжениях. Опустим высоту AA1AA1, и пусть она делит отрезок BCBC на части длиной xx и yy. С одной стороны, x+y=5x+y=5. С другой стороны, ввиду теоремы Пифагора, применённой к треугольникам ACA1ACA1 и ABA1ABA1 с общей высотой, 62−x2=AA21=42−y262−x2=AA12=42−y2. Следовательно, x2−y2=20x2−y2=20, то есть x−y=20/5=4x−y=20/5=4, откуда x=9/2x=9/2 и y=1/2y=1/2. Последнее означает, что K=A1K=A1, то есть треугольник ABKABK прямоугольный, и центр описанной около него окружности является серединой гипотенузы ABAB.Теперь опустим высоту BB1BB1, и тем же методом найдём CB1=15/4CB1=15/4, B1A=9/4B1A=9/4. Из этого следует, что MB1=15/4−27/8=3/8MB1=15/4−27/8=3/8, что составляет 1/101/10 от CB1CB1. Точно так же, KBKB составляет 1/101/10 от CBCB. Из этого можно сделать вывод, что прямые KMKM и BB1BB1 параллельны, а потому треугольник AKMAKM также прямоугольный. И центр описанной около него окружности есть середина гипотенузы AKAK.Таким образом, dd есть длина средней линии треугольника ABKABK, откуда d=BK/2=1/4d=BK/2=1/4.
4,7(13 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ