ответ:
как известно, каноническим уравнение сферы с центром в точке о(x0; y0; z0) и радиуса r имеет вид (х – x0)2 + (у – у0)2 + (z – z0)2 = r2.
поскольку точки с (1; –1,5; 3) и d (–1; 2,5; –3) лежат на сфере и центр сферы принадлежат отрезку сd, то можно утверждать, что отрезок сd является диаметром сферы и центр сферы находится на середине отрезка сd.
для того, чтобы найти длину диаметра, воспользуемся формулой вычисления расстояния между двумя точками a(xa; ya; za) и b(xb; yb; zb): ав = √[(xb – xa)2 + (yb – ya)2 + (zb – za)2]. имеем сd = √[(–1 – 1)2 + (2,5 – (–1,5))2 + (–3 – 3)2] = √(22 + 42 + 62) = √(4 + 16 + 36) = √(56) = 2√(14). значит, r = сd : 2 = 2√(14) : 2 = √(14).
теперь определим координаты центра сферы о(x0; y0; z0). имеем x0 = (xc + xd) : 2 = (1 + (–1)) : 2 = 0 : 2 = 0; y0 = (yc + yd) : 2 = (–1,5 + 2,5) : 2 = 1 : 2 = 0,5; z0 = (zc + zd) : 2 = (3 + (–3)) : 2 = 0 : 2 = 0.
таким, образом, искомое уравнение имеет вид: (х – 0)2 + (у – 0,5)2 + (z – 0)2 = 14 или х2 + (у – 0,5)2 + z2 = 14.
проверим принадлежность к сфере точек с координатами (3; –1,5; √(7)) и (1; 2,5; 3). имеем 32 + (–1,5 – 0,5)2 + (√(7))2 = 9 + 16 + 7 = 32 ≠ 14, следовательно, точка с координатами (3; –1,5; √(7)) не принадлежит к сфере. аналогично, имеем 12 + (2,5 – 0,5)2 + 32 = 1 + 4 + 9 = 14, следовательно, точка с координатами (1; 2,5; 3) принадлежит к сфере.
ответы: х2 + (у – 0,5)2 + z2 = 14; точка с координатами (3; –1,5; √(7)) не принадлежит к сфере; точка с координатами (1; 2,5; 3) принадлежит к сфере.
Пошаговое объяснение:
1 задача
РЕШЕНИЕ. 1 задача
Введем дискретную случайную величину X = (Число промахов). X может принимать
значения 0, 1, 2, 3, 4
Найдем соответствующие вероятности.
X = 0 , если охотник попал в дичь при первом выстреле, поэтому P(X = 0) = 0,7 .
X =1 , если охотник не попал в дичь при первом выстреле и попал в дичь при втором
выстреле, поэтому P(X =1) = 0,3 ⋅0,7 = 0,21.
X = 2 , если охотник не попал в дичь при первом выстреле и втором выстреле, и попал в
дичь при третьем выстреле, поэтому P(X = 2) = 0,3 ⋅0,3 ⋅0,7 = 0,063 .
X = 3, если охотник не попал в дичь при первом, втором и третьем выстреле, и попал в
дичь при четвертом выстреле, поэтому P(X = 3) = 0,3⋅0,3 ⋅0,3 ⋅0,7 = 0,0189 .
X = 4 , если охотник не попал в дичь при первом, втором, третьем и четвертом выстрелах,
поэтому P(X = 4) = 0,3 ⋅0,3 ⋅0,3 ⋅0,3 = 0,0081.
Закон распределения X :
xi
0
1
2
3
4
pi
0,7
0,21
0,063
0,0189
0,0081
Найдем числовые характеристики с.в. X .
Математическое ожидание:
M ( X ) =∑ xi pi = 0 ⋅0,7 +1⋅0,21+ 2 ⋅0,063+ 3⋅0,0189 + 4 ⋅0,0081 = 0,4251.
Дисперсия:
D( X )
x2=∑ i pi −(M ( X ))2 =0⋅0,7+1⋅0,21+4⋅0,063+9⋅0,0189+16 ⋅0,0081−0,4251 ≈0,581.
ответ:≈0,581.