Х девочек всего в классе у мальчиков всего в классе 1/3 от х = х/3 девочек участвовало в конкурсе у/5 мальчиков участвовало в конкурсе (х + у) всего учеников в классе (9х + у)/4 всего учеников участвовало в конкурсе Получаем уравнение х/3 + у/5 = (х + у)/4 и неравенство 30< (x + y) < 40 Решаем уравнение Приведя к общему знаменателю 60, получим 20х + 12у = 15*(х + у) 20х + 12у = 15х + 15у 20х - 15х = 15у - 12у 5х = 3у х = 3у/5 Далее решаем подбора, где у/5 - целое число При у₁ = 5 получаем х₁ = 3 , сумма 5 + 3 = 8, не удовлетворяет условию 30< (x + y) < 40 При у₂ = 10 получаем х₂ = 6 , сумма 10 + 6 = 16, не удовлетворяет условию 30< (x + y) < 40 При у₃ = 15 получаем х₃ = 9, сумма 15 + 9 = 24, не удовлетворяет условию 30< (x + y) < 40 При у₄ = 20 получаем х₄ = 12 , сумма 20 + 12 = 32, удовлетворяет условию 30< (x + y) < 40 Значит, в классе 12 девочек и 20 мальчиков 20 - 12 = 8 ответ: в классе на 8 мальчиков больше, чем девочек.
Решение. Пусть угол между вертикалью и нитью, прикрепленной к грузу массы m2, равен α, а ускорение груза массы m1 относительно стола a/. Тогда ускорение груза массы m1 относительно земли равно a − a/, горизонтальная составляющая ускорения груза массы m2 относительно земли равна a − a/sinα. Запишем второй закон Ньютона
Перепишем два последних уравнения
Возведем в квадрат и сложим части уравнений
Откуда
При наличии проскальзывания (a/ > 0) решая совместно уравнение (2) и первое уравнение из системы (1), получаем
где из (2), подставляя вместо T (3), получим ограничение
Без проскальзывания (a/ = 0), груз m1 неподвижен, имеем
ответ: у Коли больше солдатиков, чем у Саши в 6 раз
У Саши - 1 часть
У Юры - 2 части
У Коли - 2*3=6 частей
6:1=6 (раз)