В знаменателе поменяем основание степени и логарифмируемое выражение: 7^㏒27 (8) / 7^㏒3 (2) = 7^ (㏒27 (8) - ㏒3 (2)) В выражении ㏒27 (8) представим 27 как 3 в кубе и 8 как 2 в кубе и вынесем показатели. Они сократятся. 7^ (㏒3 (2) - ㏒3 (2)) = 7^0 = 1
Возьмем на пример числа 4 и 5 и сложим их. 4+5=9 если одно слагаемое увеличить на 4 1/10, а другое на 3 1/5, то получится: 8 1/10 + 8 1/5=8 1/10 +8 2/10=16 3/10 Сумма увеличилась на 7 3/10
если одно слагаемое уменьшить на 4 1/10, а другое на 3 1/5, то получится: 4/5+9/10=8/10+9/10=17/10=1 7/10 Сумма уменьшилась на 7 3/10
если одно слагаемое увеличить на 4 1/10, а другое уменьшить на 3 1/5, то получится: 8 1/10 + 1 4/5= 8 1/10+1 8/10= 9 9/10 Сумма увеличилась на 9/10
если одно слагаемое уменьшить на 4 1/10, а другое увеличить на 3 1/5, то получится: 7 1/5+9/10=7 2/10+9/10=7 11/10=8 1/10 Сумма уменьшилась на 9/10
Нарисуй на произвольной прямой отрезок АВ и посередине этого отрезка точку М. рядом с отрезком АВ нарисой точку О. получаем, что ОМ= 9 км. расстояyие от точки О до одного из концов участка равен 1/4 длины всего участка- тоесть OA= 1/4 AB. OM= OA+Am где OA= 1/4 AB, тоесть =1/2 АМ. выразим уравнение через х, получим: OA= x см, АМ=2ОА=2х см. известно, что ОМ= 9 км. получим уравнение: х+2х=9 3х=9 х=9:3 х=3 тоесть ОА =х = 3 см, АМ=2х = 6 см МЫ знаем, что АМ- половина АВ. Получаем: АВ=2АМ= 6х2= 12 см. ответ 12 см. (В)
7^㏒27 (8) / 7^㏒3 (2) = 7^ (㏒27 (8) - ㏒3 (2))
В выражении ㏒27 (8) представим 27 как 3 в кубе и 8 как 2 в кубе и вынесем показатели. Они сократятся.
7^ (㏒3 (2) - ㏒3 (2)) = 7^0 = 1