1) Произвольное комплексное число z в алгебраической форме: z = a + b*i Оно же в тригонометрической форме: z = r*(cos Ф + i*sin Ф) Здесь r = √(a^2 + b^2); Ф = arctg(b/a)
2) z = 1 - i a = 1; b = -1; r = √(1^2 + (-1)^2) = √2; Ф = arctg(-1/1) = -pi/4 z = √2*(cos(-pi/4) + i*sin(-pi/4))
3) Сначала представим z в обычном алгебраическом виде: Для этого умножим числитель и знаменатель на комплексно-сопряженное. Теперь переведем его в тригонометрическую форму Здесь нам номер 2), в котором мы уже представляли 1 - i. По формуле Муавра для степени и корня комплексного числа: z^n = r^n*(cos(n*Ф) + i*sin(n*Ф))
Из площади квадрата Q его сторона - √Q. Так как S=a²=>a=√S При вращении квадрата вокруг стороны получается цилиндр с высотой равной стороне квадрата и кругами в основании с радиусами равными опять же стороне квадрата. Площадь основания будет равна пи*R^2=Q*пи. Боковой стороне получим развертку -прямоугольник со стороной - 2пи*R и высота боковой стороны равна √Q, тогда боковая площадь равна 2пи*√Q*√Q=6,28Q =2pi*Q. Площадь искомый (цилиндра) складываем 2 площади основания и боковой =>S'=Q*пи+2pi*Q.=3pi*Q.