96 см² площадь боковой поверхности призмы.
Пошаговое объяснение:
В прямоугольной призме, основанием которой является прямоугольный треугольник площадь боковой поверхности (S) находится путем сложения площадей трех боковых граней - прямоугольников.
S=S₁+S₂+S₃
S₁=аh, где а - катет основания, h - боковое ребро (высота призмы)
S₂=вh, где в - катет основания, h - боковое ребро (высота призмы)
S₃=сh, где с - гипотенуза основания, h - боковое ребро (высота призмы)
S₁=4×8=32 см²
S₂=3×8=24 см².
Согласно теореме Пифагора гипотенуза с=√(а²+в²)
с=√(4²+3³)=5 см
S₃=5×8=40 см²
S=32+24+40=96 см²
Если Sм\Sб=1/16, то получаем выражение (Pi*R^2)/(Pi*r^2)=16
Если r=4, то (Pi*R^2)/16Pi=6
Pi сокращаются
(R^2)/16=16
R^2=16*16
R=16
Проверка Sб=256Pi
Sм=16Pi
Sм/Sб=16/256
Sм/Sб=1/16