Пошаговое объяснение:
Поскольку колода делится пополам и количество черных и красных карт равно, то есть только одна ситуация, когда их число в половинах колоды будет равно: 3/3 в одной и 3/3 в другой. Первая ситуация определяет вторую.
Следовательно, остается найти только первую ситуацию (вероятность):
2 * ( 6! / (3! * 3!) = 2 * (6*4*5 / 3 * 2 * 1) = 2 * (4 * 5 / 1) = 2 *4 * 5 = 40 это количество вариантов, при которых выпадает требуемая ситуация.
Общее число варинтов будет 12! / (6! * 6!) = (12 * 11 * 10 * 9 *8 *7) / (6 * 5 *4 * 3* 2) = (2 * 11 * 2 * 3 * 2 *7) / 2 = 2 * 11 * 2 *3 = 132
40 / 132 = 0,033 - вероятность того, что число черных и красных будет одинаково.
Пошаговое объяснение:
Вклад в размере 10 млн рублей планируется открыть на четыре года. В конце каждого года банк увеличивает вклад на 10% по сравнению с его размером в начале года. Кроме этого, в начале третьего и четвёртого годов вкладчик ежегодно пополняет вклад на х млн рублей, где х — целое число. Найдите наименьшее значение «х», при котором банк за четыре года начислит на вклад больше 7 млн рублей.
Решение
Проведем небольшой анализ условия задачи. Если у нас в год вклад увеличивается на 10%, то в конце первого года вклад составит 11 млн рублей, а в конце второго — 12,1 млн рублей ( 11 + 1,1). В начале третьего и четвертого года вкладчик пополняет вклад на «х» рублей. Получается, что в начале третьего года вклад (в млн рублей) составит 12,1 + х, а в конце — 13,31 + 1,1х. Аналогично, в начале четвёртого года вклад составит 13,31 + 2,1х, а в конце четвертого года — 14,641 + 2,31х.
Так как по условию задачи нам необходимо найти наименьшее целое х, для которого только начисления банка составят 7 млн рублей, то для него должно быть выполнено неравенство:
(14,641 + 2,31х) – (10 + 2х) > 7
В котором первая скобка представляет собой весь процесс движения средств по счету за четыре года, а вторая скобка представляет собой сумму денег, которые вкладчик внес на счет за все четыре года.
Решим данное неравенство, раскрыв скобки и приведя подобные и получим:
Получается, что наименьшее целое решение этого неравенства — число 8. Таким образом, в начале третьего и четвёртого годов вкладчик ежегодно пополняет вклад на 8 млн рублей.
ответ: 8
3200×0,45=1440