Диагонали проведенные из одной вершины разделяют n-угольный многоугольник на (n - 2) треугольник. Очевидно что сумма углов этих треугольников равно сумму углов многоугольника ⇒ в нашей задаче 2700 : 180 = 15 треугольников ⇒ что у многоугольника n= 17 (n - 2=150). Каждая вершина многоугольника можно соединить другими вершинами (n - 1) отрезками. Кроме боковых отрезков остальные диагонали, то есть у многоугольника (n - 3) диагональ. n - 3 = 17 - 3 = 14 ответ: 17
Диагонали проведенные из одной вершины разделяют n-угольный многоугольник на (n - 2) треугольник. Очевидно что сумма углов этих треугольников равно сумму углов многоугольника ⇒ в нашей задаче 2700 : 180 = 15 треугольников ⇒ что у многоугольника n= 17 (n - 2=150). Каждая вершина многоугольника можно соединить другими вершинами (n - 1) отрезками. Кроме боковых отрезков остальные диагонали, то есть у многоугольника (n - 3) диагональ. n - 3 = 17 - 3 = 14 ответ: 17
a^2 * v3/4 = 24v3
a^2 * v3 = 96 v3
a^2 = 96
a = v96 = 4v6
2) h=a*v3/2
h = 4v6*v3/2=2v18=6v2
3) Rоп = av3/3
Rоп = 4v6*v3/3=4v18/3=12v2/3=4v2.