1. Площадь квадрата равна длине его стороны, возведённой в квадрат: , где - это сторона квадрата. Зная площадь, можем вычислить длину стороны: см. Периметр квадрата равен длине его стороны, умноженной на 4: см.
2. Периметр прямоугольника равен удвоенной сумме его смежных сторон. Пусть см - одна из сторон прямоугольника, а другая сторона на 3 см больше, то есть, см. Составляем уравнение:
Тогда другая сторона его см.
Площадь прямоугольника равна произведению длин его смежных сторон, тогда см².
3. Для начала найдём вторую сторону прямоугольника. Периметр прямоугольника равен удвоенной сумме его смежных сторон, тогда:
Тогда площадь прямоугольника см².
Прямоугольник имеет такую же площадь, что и квадрат. Площадь квадрата равна длине его стороны, возведённой в квадрат: , где - это сторона квадрата. Зная площадь, можем вычислить длину стороны: см. Периметр квадрата равен длине его стороны, умноженной на 4: см.
В равностороннем треугольнике ABC на сторонах AC и BC отметили точки D и E такие, что CD=2AD, BE=2CE. Обозначим точку пересечения отрезков AE и BD через F. Чему равен угол BFC?
Пошаговое объяснение:
1) Введем прямоугольную систему координат .Пусть АВ=ВС=АС=1. Пусть FC∩АВ=Р .Пусть ЕК⊥АС, ВН⊥АС, РМ⊥АС.
2) Определим координаты точек .
А(0;0) ,В( ; ) ,С(1;0) ,Н(0,5 ;0) ,D( ;0) ,К( ;0) , Е(
3)Найдем координаты направляющих векторов: DB( ; ) , РС( ; ).
4)Найдем скалярное произведение векторов .
DB *РС= * + *( ) = ⇒вектор DB⊥PC ⇒∠BFC=90°.
=======================================
Пояснения( жуткие вычисления , слабонервным можно не читать).
1) Координаты точки Е. ΔКСЕ прямоугольный .
КЕ=СЕ*sin60= * .
КС=СЕ*cos60= = , поэтому АК= 1- → Е( ; ) .
2)Координаты точки В. ΔАВН- прямоугольный .
АН=НС= .
ВН=АВ*sin60=1* =
3)Ищем координаты точки Р
а)ΔВDC , по т. Менелая , , .
б)ΔАВD , по т. Менелая , , ,
AP= = .
в)ΔАРМ прямоугольный .
РМ=АР*sin60= * = .
АМ=АР*cos60= = → P ( ; ) .