Предложу решение, но мне кажется, есть что-то попроще, но не могу найти.
Рассуждаем так. Допустим до встречи 1 шёл со скоростью х км/ч, тогда второй шёл со скоростью (10-х) км/ч ( потому что км за 5 часов, значит их общая скорость была 10 км/ч)
За 5 часов х км, ему осталось идти (50-5х) км, тогда второму осталось идти 50 -(50-5х) = 5х (км) (т.к. после встречи им всё равно в сумме надо 50 км пройти.
их новые скорости: у первого:( х-1) (км/ч), у второго 1+(10-х) = 11-х (км/ч)
Теперь делим оставшиеся расстояния на скорости , получим время и зная, что первый пришёл раньше на 2 ч. составляем уравнение:
5х/(11-х) - (50-5х)/(х-1) = 2
5х/(11-х) - (50-5х)/ (х-1) - 2 = 0
приводим к общему знаменателю это (11-х)(х-1), и я буду писать только числитель:
5х(х-1) -(50-5х)(11-х) - 2(11-х)(х-1) = 0 ( т.к. дробь равно 0, если числитель равен 0, а знаменатель не равен 0)
5х^2-5x-550+55x+50x-5x^2-22x+22+2x^2-2x = 0
2x^2+76x-528 = 0
x^2+38x -264 = 0
D=2500
x=(-38-50)/2 -видно, что отриц. число, нам не подходит
или х= (-38+50)/2 = 6 (км/ч)
ответ: 6 км/ч
Приведенный ниже текст получен путем автоматического извлечения из оригинального PDF-документа и предназначен для предварительного Изображения (картинки, формулы, графики) отсутствуют.
Пошаговое объяснение:
По группе предприятий, выпускающих один и тот же вид продукции,
рассматривается функция издержек:
y = a + bx + ε ,
где y - затраты на производство, тыс. д. е.
x - выпуск продукции, тыс. ед.
1 Задача
Вариант 1 Вариант 2 Вариант 3 Вариант 4 Вариант 5
b x y b x y b x y b x y b x y
1 9 69 1 9 68 1 8 67 1 8 65 1 9 69
2 12 73 2 11 72 2 10 70 2 10 70 2 11 73
3 13 95 3 12 93 3 11 87 3 12 87 3 12 99
4 14 87 4 14 98 4 15 92 4 14 98 4 13 88
5 15 96 5 16 87 5 15 98 5 14 90 5 14 91
6 17 98 6 16 92 6 16 90 6 15 96 6 15 100
7 18 105 7 18 99 7 18 96 7 16 99 7 17 114
8 19 111 8 19 111 8 19 113 8 19 106 8 18 103
9 21 107 9 20 100 9 21 105 9 21 100 9 20 109
10 23 129 10 23 125 10 23 125 10 23 120 10 22 125
Вариант 6 Вариант 7 Вариант 8 Вариант 9 Вариант 10
b x y b x y b x y b x y b x y
1 9 67 1 9 68 1 8 69 1 8 69 1 9 67
2 11 71 2 12 72 2 10 73 2 10 73 2 11 71
3 13 97 3 13 93 3 11 99 3 12 95 3 13 97
4 14 85 4 14 98 4 15 88 4 14 87 4 15 85
5 14 89 5 15 87 5 15 91 5 14 96 5 15 89
6 16 98 6 17 92 6 16 100 6 15 98 6 16 98
7 18 112 7 18 99 7 18 114 7 16 105 7 18 112
8 20 101 8 19 111 8 19 103 8 19 111 8 19 101
9 21 107 9 21 100 9 21 109 9 21 107 9 21 107
10 23 123 10 23 125 10 23 125 10 23 125 10 23 123
Требуется:
1. Построить линейное уравнение парной регрессии y от x .
2. Рассчитать линейный коэффициент парной корреляции и коэффициент
детерминации. Сделать выводы.
3. Оценить статистическую значимость уравнения регрессии в целом.
4. Оценить статистическую значимость параметров регрессии и корреляции.
5. Выполнить прогноз затрат на производство при прогнозном выпуске продукции,
составляющем 195 % от среднего уровня.
6. Оценить точность прогноза, рассчитать ошибку прогноза и его доверительный
интервал.
7. Оценить модель через среднюю ошибку аппроксимации.
12,25,34,16