1. Объём прямой призмы равен произведению площади основания на высоту. В данном случае высота - это боковое ребро (т.к. призма прямая), основание - ромб, площадь которого равна половине произведения его диагоналей. кв.см. 2. Площадь поверхности пирамиды - это сумма площади основания и площади боковой поверхности. В основании лежит квадрат со стороной 6 см, его площадь равна 6*6 = 36 кв.см. Боковая поверхность данной пирамиды - это 4 одинаковых равнобедренных треугольников с основанием 6 см. Для нахождения площади боковой грани найдём её высоту. Треугольник ABC - прямоугольный, т.к. BC - высота (см.рис.). Сторона AC равна половине стороны основания (т.к. высота проецируется в центр основания и AC - радиус вписанной в квадрат окружности). По теореме Пифагора см. Тогда площадь боковой поверхности пирамиды кв.см. Площадь полной поверхности пирамиды кв.см.
Правило. 1 При сложении двух чисел с разными знаками из большего модуля вычитают меньший и перед полученным числом ставят знак того слагаемого, модуль которого больше. 2 При сложении двух чисел с одинаковыми знаками складывают их модули и перед полученным числом ставят их общий знак. 3 Чтобы вычислить сумму рациональных чисел, нужно отдельно сложить все положительные числа (заключив в скобки и поставив перед скобкой знак «+») и отдельно сложить все отрицательные числа(заключив в скобки и поставив перед скобкой знак «-»). Затем из большей по модулю суммы вычесть меньшую по модулю сумму, а перед полученным результатом поставить знак той суммы, модуль которой больше.
х*15=375-120
х*15=255
х=255:15=17
ответ:х=17