X – множество треугольников, А, В и С – его подмножества. Можно
ли говорить о разбиении множества X на классы А, В и С, если:
а) А – множество остроугольных треугольников, В – множество
тупоугольных треугольников, С – множество прямоугольных треугольников;
б) А – множество равнобедренных треугольников, В – множество
равносторонних треугольников, С – множество разносторонних
треугольников? - 1 задача
В классе 18 учащихся увлекаются химией, а 13 – географией. Каким
может быть число учащихся, увлекающихся: а) обоими предметами; б) хотя бы
одним предметом; в) только одним предметом? - 2 задача
Сколько различных множеств можно составить из 5 различных
цифр? - 3 задача
Выделите мой ответ лучшим и подпишитесь на меня .
5t²-16t+3=0
D=256-60=196
t1=(16-14)/10=0,2
t2=(16+14)/10=3
t2-t1=3-0,2=2,8
ответ 2,8с