Найдём сторону квадрата:
S = a² ⇒ a² = S ⇒ a = √S = √36 = 6 (см)
Найдём периметр квадрата:
P = 4a = 4 · 6 = 24 (см)
Пусть x (см) - ширина прямоугольника, тогда x + 8 (см) - длина прямоугольника. Так как периметр прямоугольника равен периметру квадрата и находится по формуле P = (a + b) · 2, то составим и решим уравнение:
(x + 8 + x) · 2 = 24
2x + 8 = 24 ÷ 2
2x + 8 = 12
2x = 12 - 8
2x = 4
x = 4 ÷ 2
x = 2 (см) - ширина прямоугольника
2 + 8 = 10 (см) - длина прямоугольника
ОТВЕТ: 10 см - длина, 2 см - ширина
16с^2-25d^2 = (4c - 5d)(4c + 5d);
b^2-49a^2 = (b - 7a)(b + 7a);
144a^2b^2-289 = (12ab - 17)(12ab + 17);
c^2-100b^2 = (c - 10b)(c + 10b);
a^2b^2c^2-225 = (abc - 15)(abc + 15);
49a^2c^2-196 = 49•(a^2c^2 - 4) = 49•(ac - 2)(ac + 2);
x^8-y^8 = (x^4 - y^4)(x^4 + y^4) = (x^2 - y^2)(x^2 + y^2)(x^4 + y^4) = (x - y)(x + y)(x^2 + y^2)(x^4 + y^4);
256-81a^4 = (16 - 9a^2)(16 + 9a^2) = (4 - 3a)(4 + 3a)(16 + 9a^2);
625-c^4 = (25 - c^2)(25 + c^2) = (5 - c)(5 + c)(25 + c^2);
Если нет описки в условии, то
29d^2c^2x^2-196 = (√29dcx - 14)(√29dcx + 14);
144a^2-361b^2 = (12a - 19b)(12a + 19b);
36x^2y^2-121 = (6xy - 11)(6xy + 11);
m^2n^2-64 = (mn - 8)(mn + 8);
2)34+27=61(км)
ответ: между сёлами 61 км.