Поскольку при укладывании по 8 и по 7 плиток в ряд прямоугольников не получается, а остаются неполные ряды, то количество плиток делится на 8 с остатком и на 7 с остатком.
Остаток от деления любого числа на 8 не может быть больше 7. По условию, это число на 5 больше, чем остаток от делания на 7. Но остаток от деления на 7 тоже не равен нулю. Значит, остаток деления на 8 может быть равен только 7. А остаток от деления на 7 равен 1.
Общее количество плиток меньше 100, иначе их хватило бы на квадратную площадку со стороной в 10 плиток.
Среди чисел меньше 100 надо найти такое,которое делится на 8 с остатком 6 и на 7 с остатком 1. Проверим все числа в пределах 100,
делящиеся на 7 с остатком 1
ответ: 78 плиток
Пошаговое объяснение:
но это не точно
на одно и то же число.
1) 5/13 = 15/39
2) 4/7 = 12/21
3) 14/9 = 42/27
4) 6/11 = 18/33
5) 9/19 = 27/57
6) 27/15 = 81/45.