55 шт.
Пошаговое объяснение:
1. "Если укладывать в ряд по 10 плиток, то для квадратной площадки плиток не хватит."
Квадратная площадка из 10 плиток в ряду должна была бы быть
10 х 10 = 100 плиток
значит осталось меньше 100 плиток .
2. "При укладывании 8 плиток ряд остается один неполный ряд,а при укладывании по 9 плиток тоже остается неполный ряд, в котором на 6 плиток меньше, чем в неполном ряду при укладывании на 8".
Неполный ряд , при укладывании по 8 плиток , может составлять от 1 до 7 плиток , но ,
по условию в неполном ряду , при укладывании по 9 плиток в ряд , остается неполный ряд в котором на 6 плиток меньше , чем в неполном ряду из 8 плиток в ряд.
Такое возможно если в неполном ряду (при укладке 8 плиток в ряд) будет 7 плиток , тогда в неполном 9-плиточном ряду будет 1 плитка ( 7-6=1)
Значит можем составить уравнение :
пусть было х рядок плитки , тогда
8х+7= 9х+1
9х-8х=7-1
х= 6 рядов было плитки , а всего плиток было
8*6+7=48+7=55 шт
Допустим, вы освоили метод интервалов (если не освоили — рекомендую вернуться и прочитать) и научились решать неравенства вида P(x)>0P(x)>0, где P(x)P(x) — какой-нибудь многочлен или произведение многочленов.
Полагаю, что для вас не составит труда решить, например, вот такую дичь (кстати, попробуйте для разминки):
(2x2+3x+4)(4x+25)>0;x(2x2−3x−20)(x−1)≥0;(8x−x4)(x−5)6≤0.(2x2+3x+4)(4x+25)>0;x(2x2−3x−20)(x−1)≥0;(8x−x4)(x−5)6≤0.
Теперь немного усложним задачу и рассмотрим не многочлены, а так называемые рациональные дроби вида:
P(x)Q(x)>0P(x)Q(x)>0
где P(x)P(x) и Q(x)Q(x) — всё те же многочлены вида anxn+an−1xn−1+...+a0anxn+an−1xn−1+...+a0, либо произведение таких многочленов.
Это и будет рациональное неравенство. Принципиальным моментом является наличие переменной xx в знаменателе. Например, вот это — рациональные неравенства:
x−3x+7<0;(7x+1)(11x+2)13x−4≥
Если -м = 3,8 , то м = -3,8.
Если к = 8,5 , то -к = -8,5.
Если к = 26,7 , то -к = -26,7.
Если к = 0 ,то -к = 0.