М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Демон1997
Демон1997
25.02.2020 08:21 •  Математика

Придумать "кричалку" про биссектрису

👇
Ответ:
mironova0
mironova0
25.02.2020
Биссектрисса это такая крыса которая бегает по углам и делит угол пополам
4,5(82 оценок)
Ответ:
reginailt
reginailt
25.02.2020
Бессиктриса это крыса которая бегает по углам и делит их на пополам
4,7(22 оценок)
Открыть все ответы
Ответ:
kovmihser228
kovmihser228
25.02.2020
Вот 1) Ax + By + C = 0
Направляющий вектор этой прямой s={A,B}={2;-3}. Значит, нормальный вектор будет n={3;2}
Вектор нормали перпендикулярный к даной прямой. Значит
  3x + 2y + c = 0
По условию P(-5;13), откуда х=-5 и у=13. Подставим
3 * (-5) + 2* 13 + C = 0
-15 + 26 + C = 0
C = -11

3x+2y-11=0

Найдем точку пересения этих прямых
{3x+2y-11=0    (1)
{2x-3y-3=0   (2)
(1)-(2)
{x + 5y - 8 = 0 ⇒ x=8-5y
{2x - 3y -3 = 0

2(8-5y) - 3y -3 = 0
16 - 10y - 3y - 3 =0
13 - 13 y = 0
y = 1
x=3

O(3;1)

Поскольку Q - симметрична точке Р, значит точка О - средина отрезка

3 = (-5+x)/2;   ⇒ x=11
1=(13+y)/2    ⇒ y=-11

Q(11;-11) - ответ Вот 2)A(3;1;-4)
B(3;1;4)
C(-3;1;-4)
AC=V((-3-3)^2+(1-1)^2+(-4-(-4))^2)=V36=6
4,6(76 оценок)
Ответ:
anzhelaromanova02
anzhelaromanova02
25.02.2020

Если для любого xиз области определения функции выполняется равенство  f(-x) = f(x), то функция является чётной.

Если для любого xиз области определения функции выполняется равенство  f(-x) = -f(x), то данная функция является нечётной.

Если же ни одно из этих равенств не выполняется, то функция не является ни чётной, ни нечётной.

б)

f(x) = \dfrac{2}{x^3-3x}

Отсюда  -f(x) = -\dfrac{2}{x^3-3x} .

Для начала найдём область определения данной функции. Её знаменатель не должен быть равен нулю:

x^3 - 3x \neq 0\\\\x(x^2-3) \neq 0\\\\\begin{equation*}\begin{cases}x \neq 0\\x^2 - 3 \neq 0\end{cases}\end{equation*}\ \ \ \Leftrightarrow\ \begin{equation*}\begin{cases}x \neq 0\\x^2\neq 3\end{cases}\end{equation*}\ \ \ \Leftrightarrow\ \begin{equation*}\begin{cases}x \neq 0\\x \neq \sqrt{3}\\x \neq -\sqrt{3}\end{cases}\end{equation*}

Итак, область определения нашли. Теперь найдём  f(-x), для этого все xв функции заменим на  -x.

f(-x) = \dfrac{2}{(-x)^3 - 3\cdot (-x)} = \dfrac{2}{-x^3 - (-3x)} = \dfrac{2}{-x^3 + 3x} = \dfrac{2}{-(x^3 - 3x)} =\\\\\\= -\dfrac{2}{x^3-3x} = \boxed{\bf{-f(x)}}

Таким образом, данная функция является нечётной.

в)

f(x) = \dfrac{1}{x^2+2}

Отсюда  -f(x) = -\dfrac{1}{x^2+2}.

Для начала найдём область определения данной функции. Её знаменатель не должен быть равен нулю:

x^2 + 2 \neq 0\\\\x^2 \neq -2\\\\x \in \mathbb{R}

То есть, для данной функции за xможно принять любое действительное число. Теперь найдём  f(-x), для этого все xв функции заменим на  -x.

f(-x) = \dfrac{1}{(-x)^2 + 2} = \dfrac{1}{x^2 + 2} = \boxed{\bf{f(x)}}

Таким образом, данная функция является чётной.

г)

f(x) = 5x^3 + x^2 + 4

Отсюда  -f(x) = -\left(5x^3 + x^2 + 4\right) = -5x^3 - x^2 - 4.

x может быть любым числом, поскольку никаких ограничений на аргумент здесь не накладывается. Теперь найдём  f(-x), для этого все xв функции заменим на  -x.

f(-x) = 5\cdot(-x)^3 + (-x)^2 + 4 = 5\cdot \left(-x^3\right) + x^2 + 4 = -5x^3 + x^2 + 4.

f(-x) \neq f(x) и  f(-x) \neq -f(x), а значит, функция не является ни чётной, ни нечётной.

4,5(83 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ