Определённому интегралу геометрически соответствует площадь некоторой фигуры. Для начала лучше начертить чертёж, по нему можно найти точки пересечения линий. Хотя можно найти их и по другому. Решаем уравнение: -x²+4x-1=-x-1 -x²+4x-1+x+1=0 -x²+5x=0 x(5-x)=0 x=0 5-x=0 x=5 Нашли верхний 5 и нижний 0 пределы интегрирования. Если на отрезке [a;b] некоторая функция f(x) больше или равна некоторой функции g(x), то площадь фигуры, ограниченной графиками данных функций и прямыми х=а и x=b, можно найти по формуле:
В нашем примере парабола расположена выше прямой -x-1
Определённому интегралу геометрически соответствует площадь некоторой фигуры. Для начала лучше начертить чертёж, по нему можно найти точки пересечения линий. Хотя можно найти их и по другому. Решаем уравнение: -x²+4x-1=-x-1 -x²+4x-1+x+1=0 -x²+5x=0 x(5-x)=0 x=0 5-x=0 x=5 Нашли верхний 5 и нижний 0 пределы интегрирования. Если на отрезке [a;b] некоторая функция f(x) больше или равна некоторой функции g(x), то площадь фигуры, ограниченной графиками данных функций и прямыми х=а и x=b, можно найти по формуле:
В нашем примере парабола расположена выше прямой -x-1
2) 42:7=6
3)6•6=36
4)36+14=50
5)270:9=30
6)30•7=210
7)210-360= -150
8) -150:4= -37,5
9)-37,5+50=12,5