Пусть скорость течения Х км/ч, тогда скорость по течению (70+Х) км/ч,
а против течения (70-Х) км/ч.
Значит за 13 часов по течению он Х) км,
а за 15 часов против течения 15(70-Х) км.
По условию задачи известно, что по течению и против течения, он проходил одно и то же расстояние, следовательно эти два выражения можно приравнять, т. е. составляем ур-е:
13(70+Х)=15(70-Х) раскроем скобки
13*70+15Х=15*70-13Х
15Х+13Х=15*70-13*70
28Х=70*(15-13)
28Х=70*2
Х=140:28
Х=5
ответ: скорость течения 5 км/ч
Пусть скорость течения Х км/ч, тогда скорость по течению (70+Х) км/ч,
а против течения (70-Х) км/ч.
Значит за 13 часов по течению он Х) км,
а за 15 часов против течения 15(70-Х) км.
По условию задачи известно, что по течению и против течения, он проходил одно и то же расстояние, следовательно эти два выражения можно приравнять, т. е. составляем ур-е:
13(70+Х)=15(70-Х) раскроем скобки
13*70+15Х=15*70-13Х
15Х+13Х=15*70-13*70
28Х=70*(15-13)
28Х=70*2
Х=140:28
Х=5
ответ: скорость течения 5 км/ч
Обозначим количество решённых задач за 100%, равное (х) задач.
И так как в первую неделю было решено 55% задач, то во вторую неделю было решено от остатка, равного 100%-55%=45% 5/9 или:
5/9*45%=5*45/9=25% (задач)
В третью неделю было решено 36 задач, равное:
100%-55%-25%=20%
На основании этих данных, составим пропорцию:
100% - х
20% - 36
х=36*100% : 20%=3600:20=180 (задач было решено)
ответ: Всего решено задач 180