Пошаговое объяснение:
е ) 1/1*3 + 1/3*5 + ... + 1/(2n-1)(2n+1) = n/(2n+1) ; ( 1 )
1) при n = 1 : 1/1*3 = 1/(2*1 +1) - правильна рівність
2) при n = k : 1/1*3 + 1/3*5 + ... + 1/(2k-1)(2k+1) = k/(2k+1) ; - правильно (при-
пущення ) , перевірка правильності формули при n = k + 1 :
1/1*3 + 1/3*5 + ... + 1/(2k-1)(2k+1) + 1/(2k+1)(2k+3) = k/(2k+1) + 1/(2k+1)(2k+3) =
= (2k²+ 3k + 1)/(2k+1)(2k+3) = (2k+1)(k + 1)/ (2k+1)(2k+3) = (k + 1)/(2k + 3) -
рівність також справджується . Тому на основі Принципу Математичної
індукції рівність ( 1 ) справедлива при будб-яких значеннях nЄN .
Дробь называется правильной, если ее числитель меньше знаменателя. Если же числитель больше знаменателя или равен ему, то дробь называется неправильной.
Например, , , - правильные дроби, а , , - неправильные дроби.
Правильная дробь всегда меньше единицы.
Неправильная дробь обозначает число, большее или равное 1.
Например, < 1; > 1.
Дробь, у которой числитель равен знаменателю, равна 1.
Например, = 1.
Неправильную дробь часто записывают в виде смешанного числа - числа, состоящего из целой и дробной части.
Чтобы представить неправильную дробь в виде смешанного числа, нужно разделить с остатком числитель на знаменатель. Частное будет целой частью смешанного числа, остаток числителем дробной части, а делитель - знаменателем дробной части.
Пример: = 49 : 15 = 3 (ост. 4).
= 3
Чтобы представить смешанное число в виде неправильной дроби, нужно знаменатель умножить на целую часть числа, к полученному произведению прибавить числитель дробной части и записать эту сумму в числитель дроби. В знаменатель неправильной дроби записываем знаменатель дробной части смешанного числа.
Пример: 5 = = .