Плавательная дорожка - 25м. Четыре длины вольным стилем - 25*4=100 (м) Две длины брассом - 25*2=50 (м) Находим кол-во метров, сколько всего проплыл Дима - 100+50=150 (м) ответ: 150 м.
Решение ищем по формуле Муавра-Лапласа. Обозначим р=0,1 (вероятность успеха) , n=500 (количество испытаний). Матожидание числа опытов М=n*p=500*0,1=50, дисперсия D=n*p*(1-p)=50*0,9=45. (50-10)/(45^0.5)>P>(50-7)/(45^0.5), то есть 6,41>P>5,963. Р=1/(6,28^0,5)интеграл в пределах от 5,963 до 6,41 exp(-x^2/2)=1,166*10^-9. Интеграл табличный, решается через табулированную функцию. Требуемые значения случайной величины выходят за границу 4* ско, поэтому значение вероятности и такое маленькое.
Четыре длины вольным стилем - 25*4=100 (м)
Две длины брассом - 25*2=50 (м)
Находим кол-во метров, сколько всего проплыл Дима - 100+50=150 (м)
ответ: 150 м.