№1.
Пусть дочери х (лет), тогда отцу 8х (лет). Разница в возрасте 28 лет. Составим уравнение:
1) 8х - х = 28
7х = 28
х = 28 : 7
х = 4 (года - дочери)
2) 4 * 8 = 32 года - отцу - ответ.
№2.
Сыну х (лет), тогда матери 6х (лет). Разница 25 лет
1) 6х - х = 25
5х = 25
х = 25 : 5
х = 5 (лет - сыну)
2) 5 * 6 = 30 лет - матери - ответ.
№1.
х - задуманное число
(х + 28) - увеличили число на 28
3х - число увеличилось в 3 раза
х + 28 = 3х
х - 3х = - 28
- 2х = - 28
х = (- 28) : (- 2)
х = 14 - само число.
№2.
х - задуманное число
(х + 35) - увеличили на 35
6х - увеличилось в 6 раз
х + 35 = 6х
х - 6х = 35
- 5х = - 35
х = (- 35) : (- 5)
х = 7 - задуманное число.
№1.
Пусть дочери х (лет), тогда отцу 8х (лет). Разница в возрасте 28 лет. Составим уравнение:
1) 8х - х = 28
7х = 28
х = 28 : 7
х = 4 (года - дочери)
2) 4 * 8 = 32 года - отцу - ответ.
№2.
Сыну х (лет), тогда матери 6х (лет). Разница 25 лет
1) 6х - х = 25
5х = 25
х = 25 : 5
х = 5 (лет - сыну)
2) 5 * 6 = 30 лет - матери - ответ.
№1.
х - задуманное число
(х + 28) - увеличили число на 28
3х - число увеличилось в 3 раза
х + 28 = 3х
х - 3х = - 28
- 2х = - 28
х = (- 28) : (- 2)
х = 14 - само число.
№2.
х - задуманное число
(х + 35) - увеличили на 35
6х - увеличилось в 6 раз
х + 35 = 6х
х - 6х = 35
- 5х = - 35
х = (- 35) : (- 5)
х = 7 - задуманное число.
Р (А) =m/n
n равно числу выбрать 3 изделия из 10
n=10!/(3!*7!)=8*9*10/6=120
m равно числу выбрать одно бракованное изделие из 3 и два небракованных изделия из 7
m=3*(7!/(5!*2!))=3*6*7/2=63
Тогда Р (А) =63/120=21/40
Обратите внимание, что найдена вероятность того, что среди трех выбранных изделий будет ТОЛЬКО ОДНО бракованное, а не ХОТЯ БЫ одно.