М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Сchernyh
Сchernyh
31.05.2021 02:58 •  Математика

Решить логическую .вообщем суретте 28кампит корсетилген 4 ыдыс.осы кампитты торт ыдыска тен болип сал.ар ыдыска неше кампит салынды.сол кампиттерды ыдыстарга 4тен болип сал .неше ыдыска кампит салынды?

👇
Ответ:
Lemonchick
Lemonchick
31.05.2021
28÷4=7
Əр ыдыста 7 кəмпит
төрт ыдыста28 кəмпит.Себебі,7*4=28
4,7(52 оценок)
Открыть все ответы
Ответ:
Anonim307
Anonim307
31.05.2021

7.

Из обратно теоремы о пропорциональных отрезков, если прямые, пересекающие две другие прямые (параллельные или нет), отсекают на обеих из них равные или пропорциональные между собой отрезки, начиная от вершины, то такие прямые параллельны. Отсюда следует, что:

Отрезки MN и NK параллельны отрезкам BC и AD, а значит, и весь отрезок MK || основам трапеции (BC || AD). MK — средняя линия трапеции, т.к. точка М делит сторону AB пополам.

Формула для нахождения ср. линии трапеции:

m=\frac{a+b}{2} ,

где a и b — основы трапеции.

Подставляем значения:

MK=\frac{BC+AD}{2} = \frac{10+14}{2} = \frac{24}{2} = 12

ответ: MK = 12.

8. EM || BC || AD по теореме о пропорциональных отрезках. EM — средняя линия трапеции. Все отрезки, образующие среднюю линию EM параллельны основам трапеции.  

Найдем EM:

EM=\frac{BC+AD}{2} = \frac{16+6}{2} = \frac{22}{2} = 11

Средняя линия делит диагонали пополам.

Р-м ΔABC и ΔDCC: EK и LM — средние линии.  

Средняя линия треугольника равна половине стороны к которой она параллельна. Находим длины этих отрезков.

EK = LM =  DB/2 = 6/2 = 3.

Находим KL: EM − (EK+LM) = 11−(3+3) = 5

ответ. KL = 5.

9. ABCD — равнобедренная трапеция. MF — средняя линия, AM = MB = CF = FD = 2. BC = EK = 2. BE и CK — высоты трапеции.

Р-м прямоугольные треугольники ABE и DKC: ∠A = ∠D = 60°. Значит ∠AEB и ∠KCD — по 30°.

Катет, лежажий напротив угла, синус которого 30°, равен половине гипотенузе. AE/KD = AB/CD/2= 2.

AD = 2*2+2 = 6

MF = \frac{BC+AD}{2}=\frac{2+6}{2}=4

ответ: MF = 4.

4,8(98 оценок)
Ответ:
Set1z1337
Set1z1337
31.05.2021

7.

Из обратно теоремы о пропорциональных отрезков, если прямые, пересекающие две другие прямые (параллельные или нет), отсекают на обеих из них равные или пропорциональные между собой отрезки, начиная от вершины, то такие прямые параллельны. Отсюда следует, что:

Отрезки MN и NK параллельны отрезкам BC и AD, а значит, и весь отрезок MK || основам трапеции (BC || AD). MK — средняя линия трапеции, т.к. точка М делит сторону AB пополам.

Формула для нахождения ср. линии трапеции:

m=\frac{a+b}{2} ,

где a и b — основы трапеции.

Подставляем значения:

MK=\frac{BC+AD}{2} = \frac{10+14}{2} = \frac{24}{2} = 12

ответ: MK = 12.

8. EM || BC || AD по теореме о пропорциональных отрезках. EM — средняя линия трапеции. Все отрезки, образующие среднюю линию EM параллельны основам трапеции.  

Найдем EM:

EM=\frac{BC+AD}{2} = \frac{16+6}{2} = \frac{22}{2} = 11

Средняя линия делит диагонали пополам.

Р-м ΔABC и ΔDCC: EK и LM — средние линии.  

Средняя линия треугольника равна половине стороны к которой она параллельна. Находим длины этих отрезков.

EK = LM =  DB/2 = 6/2 = 3.

Находим KL: EM − (EK+LM) = 11−(3+3) = 5

ответ. KL = 5.

9. ABCD — равнобедренная трапеция. MF — средняя линия, AM = MB = CF = FD = 2. BC = EK = 2. BE и CK — высоты трапеции.

Р-м прямоугольные треугольники ABE и DKC: ∠A = ∠D = 60°. Значит ∠AEB и ∠KCD — по 30°.

Катет, лежажий напротив угла, синус которого 30°, равен половине гипотенузе. AE/KD = AB/CD/2= 2.

AD = 2*2+2 = 6

MF = \frac{BC+AD}{2}=\frac{2+6}{2}=4

ответ: MF = 4.

4,6(4 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ