М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
romaroma6
romaroma6
13.06.2021 07:44 •  Математика

Вычесли периметр и площадь прямоугольника со сторонами 7см и9 см

👇
Ответ:
MaxPlayTheme
MaxPlayTheme
13.06.2021
Решение:
формула площади S=a×b
периметр P=(a+b)×2

P=(7+9)×2=16×2=32см
S=7×9=63см^2
4,7(32 оценок)
Открыть все ответы
Ответ:
Niktommy
Niktommy
13.06.2021
МИЛОСТЬ, -и, ж. 1. Доброе, человеколюбивое отношение. Оказать м. Сменить гнев нам. (перестать сердиться; ирон.) . Сдаться нам. победителя (о сдаче без всяких условий) . Из милости сделать что-н. (по снисхождению) . 2. мн. Благодеяния, дар. Осыпать милостями кого-н. 3. Благосклонность, полное доверие, расположение к кому-н. низшему со стороны высшего (устар.) . Быть в милости у кого-н. * Ваша (твоя, его) милость (устар. ) - обращение низшего к высшему. Милости просим - вежливое приглашение. По милости кого или чьей (ирон. ) - из-за кого-н. , по вине кого-н. По твоей милости опоздали. Сделай (те) милость (устар. и ирон. ) - выражение согласия или Сделай милость немножко. Скажи (те) на милость (ирон. устар.) , вводн, сл. - скажите вот удивительно.
4,4(6 оценок)
Ответ:
1POMOGUTE1
1POMOGUTE1
13.06.2021
Выигрышная стратегия для первого игрока:
первое число – количество спичек.
Последующие числа: ходы игроков, в квадратных скобках [] – указаны ходы соперника

1    1 – выигрыш
2    2 – выигрыш
3    нет выигрышной стратегии
4    1, [1 или 2], 2 или 1 – выигрыш
5    5 – выигрыш

6    1 – гарантирует выигрыш соперника (см. пункт 5 с инверсией позиций).
6    2 – гарантирует выигрыш соперника (см. пункт 4 с инверсией позиций).
6    5 – гарантирует выигрыш соперника (см. пункт 1 с инверсией позиций).
6    нет выигрышной стратегии

7    1, далее у соперника нет шансов (см. пункт 6 с инверсией позиций).
8    2, далее у соперника нет шансов (см. пункт 6 с инверсией позиций).

9    1 – гарантирует выигрыш соперника (см. пункт 8 с инверсией позиций).
9    2 – гарантирует выигрыш соперника (см. пункт 7 с инверсией позиций).
9    5 – гарантирует выигрыш соперника (см. пункт 4 с инверсией позиций).
9    нет выигрышной стратегии

10    1, далее у соперника нет шансов (см. пункт 9 с инверсией позиций).
11    2, далее у соперника нет шансов (см. пункт 9 с инверсией позиций).

12    1 – гарантирует выигрыш соперника (см. пункт 11 с инверсией).
12    2 – гарантирует выигрыш соперника (см. пункт 10 с инверсией).
12    5 – гарантирует выигрыш соперника (см. пункт 7 с инверсией).
12    нет выигрышной стратегии

Просматривается индукционный вывод.

Допустим, мы знаем, что:

3n–2    выигрыш гарантирован
3n–1    выигрыш гарантирован
3n    нет выигрышной стратегии
3n+1    выигрыш гарантирован
3n+2    выигрыш гарантирован

Это верно для n = 3.

Тогда:

3n+3    1 – гарантирует выигрыш соперника (см. пункт 3n+2 с инверсией).
3n+3    2 – гарантирует выигрыш соперника (см. пункт 3n+1 с инверсией).
3n+3    5 – гарантирует выигрыш соперника (см. пункт 3n–2 с инверсией).
3(n+1)    нет выигрышной стратегии

3(n+1)+1    1, далее у соперника нет шансов (см. пункт 3(n+1) с инверсией).
3(n+1)+2    2, далее у соперника нет шансов (см. пункт 3(n+1) с инверсией).

Значит всё сказанное в допущении верно и для n+1,
т.е. для n=4, n=5, n=6, n=7 и т.д.

О т в е т :

Первый может гарантированно выиграть, если число спичек на столе не кратно трём. Стало быть, ему нужно всегда оставлять на столе перед соперником число спичек кратное трём. Если в очередном ходе начавшего игру на столе лежит число спичек больше кратного трём на единицу (1, 4, 7, 10, 13 и т.п.), то начавший игру должен брать одну спичку, оставляя сопернику кратное трём. Если в очередном ходе начавшего игру на столе лежит число спичек больше кратного трём на двойку (2, 5, 8, 11, 14 и т.п.), то начавший игру должен брать две или пять спичек (если это возможно), оставляя сопернику кратное трём.

Второй может гарантированно выиграть, если начальное число спичек на столе кратно трём. В любом ходе ему нужно всегда оставлять на столе перед начавшим игру число спичек кратное трём. Если в очередном ходе второго игрока на столе лежит число спичек больше кратного трём на единицу (1, 4, 7, 10, 13 и т.п.), то второй игрок должен брать одну спичку, оставляя начавшему – кратное трём. Если в очередном ходе второго игрока на столе лежит число спичек больше кратного трём на двойку (2, 5, 8, 11, 14 и т.п.), то второй игрок должен брать две или пять спичек (если это возможно), оставляя начавшему – кратное трём.

.
4,7(2 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ