1. Сумма углов треугольника равна 180°. Один из его углов равен 90°, тогда сумма двух оставшихся острых равна 180° - 90° = 90°.
Именно поэтому для нахождения второго острого угла достаточно из 90° вычесть величину первого острого угла.
В нашем случае
90° - 36° = 54° - величина второго острого угла прямоугольного треугольника.
2. 36° : 180° = 36/180 = 1/5 = 0,2 = 20% суммы всех углов составляет величина первого острого угла.
3. 54° : 180° = 54/180 = 3/10 = 30% суммы всех углов составляет величина второго острого угла.
Величина второго острого угла - 54°. Сумма углов треугольника - 180°. Острый угол величиной 36° составляет 20% от суммы углов треугольника, а второй острый угол 54° – 30%.
Один з кутів прямокутного трикутника, що лежить в освнові даної прямої призми 45 градусів, значить і другий кут дорівнює 45 градусів (90-45=45 або 180-90-45=45).
Два кути трикутника рівні, значить він рівнобедрений і катети трикутника між собою рівні.
a=b=6 см
ГІпотенуза по теоремі Піфагора дорівнює с=корінь(a^2+b^2)=корінь(6^2+6^2)=6*корінь(2)
Площа прямокутного трикутника дорівнює половині добутку катетів
S(ABC)=ab/2=6*6/2=18 кв.см
Обєм прямої призми дорівнює добітку площі основи на висоту
V=S(ABC)*h
тому
висота призми h=V/S(ABC)
h=108/18=6 см
Бічна поверхня призми - прямокутники, де довжина прямокутника - це одна із сторін прямокутного трикутника, ширина прямокутника - висота призми
Площа прямокутника добуток його довжини на ширину.
Площа бічної поверхні дорівнює сумі площ бічних граней
Sб=ah+bh+ch=(a+b+c)h
Sб=(6+6+6корінь(2))*6=6*6*(1+1+корінь(2))=36*(2+корінь(2))=72+36корінь(2) см