Представим города, как вершины графа, а дороги, как рёбра.
Изначально у нас был полный граф на 30 вершин, следовательно, в нём было (30 * 29 : 2 = 435) рёбер. Минимальный связный граф - дерево. В дереве на 30-ти вершинах будет 29 рёбер, следовательно, убрать можно не более (435 - 29 = 406) рёбер. Пример - уберём все рёбра из полного графа на 29 вершин, тогда уберётся (29 * 28 : 2 = 406) рёбер, а из любой вершины можно будет добраться до другой через 30-ую вершину, которую мы не трогали.
ответ: 406 дорог.
Представим города, как вершины графа, а дороги, как рёбра.
Изначально у нас был полный граф на 30 вершин, следовательно, в нём было (30 * 29 : 2 = 435) рёбер. Минимальный связный граф - дерево. В дереве на 30-ти вершинах будет 29 рёбер, следовательно, убрать можно не более (435 - 29 = 406) рёбер. Пример - уберём все рёбра из полного графа на 29 вершин, тогда уберётся (29 * 28 : 2 = 406) рёбер, а из любой вершины можно будет добраться до другой через 30-ую вершину, которую мы не трогали.
ответ: 406 дорог.
1) 2 ц 70 кг = 270 кг
2) 270 * 5/9 = 150(кг) яблок
3) 270 * 1/9 = 30(кг) груш
4) 150 - 30 = 120(кг) на 120 кг масса яблок больше массы груш
2-ой
1) 5/9 - 1/9 = 4/9(ч) на 4/9 части масса яблок больше массы груш
2) 270 * 4/9 = 120(кг) на 120 кг масса яблок больше массы груш