f(x) = (х + 2)(х - 3)(х - 5)
Областью определения этой функции является множество всех чисел. Нулями функции служат числа -2, 3, 5. Они разбивают область определения функции на промежутки
(
−
∞
;
−
2
)
,
(
−
2
;
3
)
,
(
3
;
5
)
и
(
5
;
+
∞
)
Выясним, каковы знаки этой функции в каждом из указанных промежутков.
Выражение (х + 2)(х - 3)(х - 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:
(
−
∞
;
−
2
)
(
−
2
;
3
)
(
3
;
5
)
(
5
;
+
∞
)
x+2 – + + +
x-3 – – + +
x-5 – – – +
Отсюда ясно, что:
если
x
∈
(
−
∞
;
−
2
)
, то f(x)<0;
если
x
∈
(
−
2
;
3
)
, то f(x)>0;
если
x
∈
(
3
;
5
)
, то f(x)<0;
если
x
∈
(
5
;
+
∞
)
, то f(x)>0.
Мы видим, что в каждом из промежутков
(
−
∞
;
−
2
)
,
(
−
2
;
3
)
,
(
3
;
5
)
,
(
5
;
+
∞
)
функция сохраняет знак, а при переходе через точки -2, 3 и 5 ее знак изменяется.
-2 3 5
Вообще пусть функция задана формулой
f(x) = (x-x1)(x-x2) ... (x-xn),
где x–переменная, а x1, x2, ..., xn – не равные друг другу числа. Числа x1, x2, ..., xn являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.
Это свойство используется для решения неравенств вида
(x-x1)(x-x2) ... (x-xn) > 0,
(x-x1)(x-x2) ... (x-xn) < 0,
где x1, x2, ..., xn — не равные друг другу числа
Рассмотренный решения неравенств называют методом интервалов.
Приведем примеры решения неравенств методом интервалов.
Решить неравенство:
x
(
0
,
5
−
x
)
(
x
+
4
)
<
0
Очевидно, что нулями функции f(x) = x(0,5-x)(x+4) являются точки
x
=
0
,
x
=
1
2
,
x
=
−
4
Наносим на числовую ось нули функции и вычисляем знак на каждом промежутке:
-4 0 0,5
Выбираем те промежутки, на которых функция меньше нуля и записываем ответ.
x
∈
(
−
4
;
0
)
∪
(
0
,
5
;
+
∞
)
или
−
4
<
x
<
0
;
x
>
0
,
5
Решить неравенство:
x
+
2
x
−
1
≤
2
x
+
2
x
−
1
≤
2
⇒
x
+
2
−
2
(
x
−
1
)
x
−
1
≤
0
⇒
−
x
+
4
x
−
1
≤
0
Наносим на числовую ось нули и точки разрыва функции:
1 4
Выбираем те промежутки, на которых функция меньше или равна нулю и записываем ответ.
x
∈
(
−
∞
;
1
)
∪
[
4
;
+
∞
)
или
x
<
1
;
x
≥
4
Поместите глаголы в скобки в настоящее или настоящее непрерывное
1 Он всегда …………………………… (делать) домашнее задание во второй половине дня.
Сейчас 2 часа дня. Он …………………………………… .. (делать) свою домашнюю работу на
момент.
2 Они ………………………… .. (работают) по будням. Сегодня воскресенье.
погода хорошая Они ……………………………… (нет, работают). Они
………………………… (есть) пикник. У них есть)
немного фруктов, бутербродов и минеральной воды.
3 - Слушай! Кто …………………………… .. (поют)?
- Ой! Моя старшая сестра …………………………. (Поют).
- Она ……………………… (поют) очень хорошо!
- Она ……………………. (хочу) быть певцом. Я люблю)
моя сестра. Но она ……………. всегда ……………… (поют)!
Она никогда мне с моей работой Гомера!
4 - Смотри! Это ……………………………. (снег)! Пойдем в парк и сделаем
Снеговик!
- Я думаю, что мы ………………… (нужны) перчатки или варежки.
- И ……………………… (не забывайте) ваш толчок
Ручка-в 4 раза > К., на 17 руб < Ц
Карандаш-
Циркуль-
Заплачено 53 руб.
Решение:
Р-4Х. 4x+x+4x-17=53
К-Х. 9x-17=53
Ц-4Х-17 9x=53-17
9x=36
x=36:9
x=36:9
x=4
ответ: карандаш стоит 4 р.