1) Р (А) = 0,99³=0.970299
2) так как n=450 достаточно велико (условие npq=450*0.55*0.45=111.375≥20 выполнено) , то применяем формулу Муавра - Лапласа:
x= (375-450*0.55)/√(450*0.55*0.45)=127.5/10.553=12,08
Р (375;450)=f(12.08)/√(450*0.55*0.45)=0.0000015/10.553= 0,000000142, что практически не возможно.
3) Воспользуемся интегральной теоремой Муавра-Лапласа:
x1=(345-400*0.9)/√(400*0.9*0.1)=(-15)/6=-2.5
x2=(372-400*0.9)/√(400*0.9*0.1)=12/6=2
P400(345≤x≤372)≈1/2[Ф (2)-Ф (-2,5)]=1/2[Ф (2)+Ф (2,5)]=1/2(0.9545+0.9876)=0.97105
Пошаговое объяснение:
Правильный ответ — Г.
Пошаговое объяснение:
Используя второе условие, мы можем сразу узнать площадь треугольника, благодаря значению высоты, которое нам дано по условию.
S = 1/2 AC × AH (AC - основание, AH - высота);
S = 1/2 6 × 4;
S = 3 × 4;
S = 12.
При использовании первого условия необходимо узнать значение основания. Так как у нас проведена высота, мы имеем два прямоугольных треугольника. Рассмотрим из них ∆ABH, в котором известна гипотенуза AB и высота AH. Через теорему Пифагора (c² = a²+b²) можно узнать значение катета BH.
5² = a²+4²;
a² = 5² - 4²;
a = √5² - 4²;
a = √25 - 16;
a = √9;
a = 3.
К слову, прямоугольные треугольники ∆ABH и ∆ACH являются египетскими (треугольник, у которого катеты равны 3 и 4, а гипотенуза – 5).