Поскольку , то треугольники MAN и BAC подобны. Значит MN параллелен BC ⇔ BMNC - трапеция. При этом BN и MC - диагонали. В трапеции отрезок, соединяющий середины оснований, продолжения боковых сторон и точка пересечения диагоналей лежат на одной прямой. Следовательно, AT - медиана треугольника ABC. Заметим, что отношение "расстояний" пройденных точками A и O равно искомому отношению диаметров окружностей, что равно отношению радиусов. Точка T зафиксирована. Спроецируем путь пройденный точкой O на вертикальную ось. Получим длину диаметра окружности. Данный диаметр пропорционален длине отрезка OT. Точка A пройдет весь путь окружности, проекция этого пути равна диаметру описанной окружности. Так как точка O лежит на отрезке AT, то пройденный путь пропорционален диаметру описанной окружности с тем же коэффициентом пропорциональности, что и отношение отрезка OT к соответствующему пути. Получили, что искомое отношение радиусов равно отношению
. Пусть MB = x, AM = 3x; AN = 3y; NC = y; TC = BT; По теореме Менелая:
, Значит
; ответ: 7:1
Пошаговое объяснение:
1)y= (√x+1 )+ 2/(x-4)
a) первое ограничение на √x - здесь х ≥ 0
б) второе ограничение на знаменатель (х-4) ≠ 0 - здесь х≠ 4
объединяем, получаем ООФ
{x ∈R: x ≥ 0; x≠4}
2)y= (√6-x) + 2/(x²-6x)
здесь ограничение только на знаменатель (x²-6x) = х(х-6)≠ 0
х ≠ 0 и х ≠ 6
{x ∈R: х ≠ 0; х ≠ 6}
3)y= (√x-2) - x+8/x-5
аналогично первому примеру ограничения на подкоренное выражение х ≥ 0 и на знаменатель (х-5) ≠ 0 ⇒ х ≠ 5
{x ∈R: x ≥ 0; x≠5}
примечание:
если бы скобки были расставлены иначе, например,
не так 1) y= (√x+1 )+ 2/(x-4)
а вот так 1)y= √(x+1 )+ 2/(x-4),
то область определения была бы другая
вот такая {x ∈R: x ≥ -1; x≠4}