Х км/ч- скорость 1 автобуса(х+4) км/ч- скорость 2 автобусаS=72 км72/х час-время 1 автобуса72/(х+4) час- время 2 автобусаОдин автобус прибыл на 15 минут раньше, т.е на 1/4ч или 0.25часа72/х-72/(х+4)=0,25- умножим обе части уравнения на х(х+4), при условии,что х(х+4) не равно нулю.72х+288-72х=0,25х^2+x0.25x^2+x-288=0-умножим обе части уравнения 4x^2+4x-1152=0D=4^2-4*(-1152)=16+4608=4624x1=-4+68/2=64/2x1=32x2=-4-68/2=-72/2x2=-36-корень не является нашим решением уравнения х км/ч- скорость 1 автобуса=32км/ч(х+4) км/ч- скорость 2 автобуса=32+4=36км/ч 72/32-72/36=0,252,25-2=0,250,25=0,25-Один автобус прибыл на 15 минут раньше(0.25часа или 1/4часа)
Построение ясно из чертежа. АВ=СД=17см. Из равенства боковых сторон следует, что ∠ABE=∠CFD=90°. AD=44 см, АС=39 см. Проведем в трапеции высоты BE и CF, обозначив из длину через h. Эти высоты отсекут от основания AD отрезки AE и DF, длину которых мы обозначим через x. Рассматриваем два прямоугольных треугольника: ΔABE и ΔACF. Для каждого из них запишем теорему Пифагора. AB² = h² + x² → h² = AB² - x²; AC² = h² + (AD - x)² → h² = AC² - (AD - x)² Поскольку левые этих уравнений части равны, то равны и их правые части. AB² - x² = AC² - (AD - x)² 17² - x² = 33² - (44 - x)² Раскрывая скобки и приводя подобные члены получаем уравнение 88·х = 704 → х = 8 (см) Теперь находим BC = AD - 2·x = 44 - 2·8 = 28 (см) Осталось найти высоту h. Найдем ее из уравнения h² = AB² - x²; h² = 17² - 8² = 289 - 64 = 225; h=√225 = 15 (см)