В решении.
Пошаговое объяснение:
1) |x| < 7
Схема:
x < 7 x > -7
Решение неравенства: х∈(-7; 7), пересечение.
Входят в решения неравенства: -6; 0; 4.
Неравенство строгое, скобки круглые.
2) |x| <= 11
Схема:
x <= 11 x >= -11
Решение неравенства: х∈[-11; 11], пересечение.
Входят в решения неравенства: -9; -6; 0; 4; 8.
Неравенство нестрогое, скобки квадратные.
3) |x| > 1
Схема:
x > 1 x < -1
Решение неравенства: х∈(-∞; -1)∪(1; +∞), объединение.
Входят в решения неравенства: -20; -9; -6; 4; 8; 15.
Неравенство строгое, скобки круглые.
4) ) |x| >= 5
Схема:
x >= 5 x <= -5
Решение неравенства: х∈(-∞; -5]∪[5; +∞), объединение.
Входят в решения неравенства: -20; -9; -6; 8; 15.
Неравенство нестрогое, скобки квадратные, а знаки бесконечности всегда с круглой скобкой.
(х - 7) + а = 23; х = 9 - корень уравнения
(9 - 7) + а = 23
2 + а = 23
а = 23 - 2
а = 21
Проверка: (х - 7) + 21 = 23
х - 7 = 23 - 21
х - 7 = 2
х = 2 + 7
х = 9
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
(11 + х) + 101 = а; х = 5 - корень уравнения
(11 + 5) + 101 = а
16 + 101 = а
а = 117
Проверка: (11 + х) + 101 = 117
11 + х = 117 - 101
11 + х = 16
х = 16 - 11
х = 5