Обозначим искомую дробь а/в а+10/в+10=2а/в (а+10)в=2а (в+10) ав+10в=2ав+20а 10в-ав=20а в=20а/10-а в и 20а - натуральные числа, поэтому и знаменатель должен быть положительным. значит, а не больше девяти. подставляя последовательно вместо а числа от 1 до девяти, убеждаемся, что условию несократимости удовлетворяет лишь один вариант, когда найденное в - целое число: а=2, то есть единственный ответ: 2/5. после увеличения и числителя и знаменателя на 10 дробь2/5 превращается в дробь 12/15=4/5, которая вдвое больше дроби 2/5.
160 | 2 120 | 2 100 | 2
80 | 2 60 | 2 50 | 2
40 | 2 30 | 2 25 | 5
20 | 2 15 | 3 5 | 5
10 | 2 5 | 5 1
5 | 5 1 100 = 2² · 5²
1 120 = 2³ · 3 · 5
160 = 2⁵ · 5
НОД = 2² · 5 = 20 - наибольший общий делитель
160 : 20 = 8 - яблоки
120 : 20 = 6 - апельсины
100 : 20 = 5 - груши
ответ: 20 подарков, в каждом из которых по 8 яблок, 6 апельсинов и 5 груш.