М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Azimov1177
Azimov1177
24.08.2021 17:55 •  Математика

Вычислите: a)1/27+ 5/28= ? б)5/21 - 5/28=? в) 11/ 18-7 / 12 =?

👇
Ответ:
Стивен12
Стивен12
24.08.2021
А) 0,215
Б) 0,059
В) 0,028
4,4(62 оценок)
Открыть все ответы
Ответ:
LoveSmile78900987
LoveSmile78900987
24.08.2021
Можно найти несколько пределов данной числовой последовательности. Для этого нужно посмотреть, что произойдет с ней при стремлении к бесконечности с разными знаками, и в "опасных" точках. 

"Опасные" точки сразу видны, это:
1) n=- \frac{2}{7} - знаменатель обращается в 0.
2) n=0 - по обычаю проверяется эта точка.

Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов:
lim (1+ \frac{1}{x})^x=e (при x→∞)

Выделяем целую часть в дроби:

\frac{7n+3}{7n+2 } = 1 + \frac{1}{7n+2 }

Используем свойство 2-го замечательного предела, но добавляем степени:

lim (1 + \frac{1}{7n+2 })^{3n-4}

lim (((1 + \frac{1}{7n+2 })^{7n+2})^{ \frac{1}{7n+2}})^{3n-4} = e^{\frac{1}{7n+2} * 3n-4} (при n→∞)

То есть мы степень не меняли: домножили и разделили.

Посчитаем, что получилось:

e^{\frac{1}{7n+2} * 3n-4} = e^{ \frac{3n-4}{7n+2}} = e^{ \frac{n*(3-\frac{4}{n}) }{n*(7+\frac{2}{n})} } = e^{ \frac{3}{7} } (при n→∞)

Итак: 
1) n→+∞ предел равен e^{ \frac{3}{7} }
2) n→-∞  предел равен e^{ \frac{3}{7} }

3) n→0 предел равен:
lim ( \frac{7n+3}{7n+2})^{3n-4} = (\frac{3}{2})^{-4} = (\frac{2}{3})^{4} = \frac{16}{81}

4) n- \frac{2}{7}
По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).

Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.

Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - \frac{3}{7} \leq x \leq - \frac{2}{7} - мы получаем отрицательное основание).

Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).

Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).

Найдите предел числовой последовательности. укажите, является ли заданная числовая последовательност
4,4(95 оценок)
Ответ:
ArinaBelman18
ArinaBelman18
24.08.2021
Преобразуем x^2 - 6x + y^2 - 6y + 14 = 0.
x^2 - 6x + 9 + y^2 - 6y + 9 = 4
(x-3)^2 + (y-3)^2 = 2^2 - окружность радиуса 2 с центром в (3;3)
Преобразуем x^2 - 2a(x+y) + y^2 + a^2 = 0.
x^2 - 2ax + a^2 + y^2 - 2ay + a^2 = a^2
(x-a)^2 + (y-a)^2 = a^2 - окружность радиуса a с центром в (a;a).
Видим, что центр второй окружности располагается на прямой y=x, там же, где и центр первой окружности. Следовательно, точка касания окружностей будет лежать именно на прямой y=x.
Найдем эти точки касания:
x=y,
(x-3)^2 + (y-3)^2 = 2^2
Отсюда
2*(x-3)^2 = 2^2
(x-3)^2=2
x=y=3+-√2.
Тогда для второй окружности должно выполняться условие:
Расстояние от центра второй окружности (a;a) до точки касания равно радиусу второй окружности.
1) Точка касания (3-√2;3-√2)
Длина вектора (a - (3-√2); a - (3-√2)) равна a. Это значит, что (a - (3-√2))^2+(a - (3-√2))^2=a^2,
2(a-(3-√2))^2=a^2,
(a√2-(3√2-2))^2-a^2=0,
(a(√2-1)-(3√2-2))(a(√2+1)-(3√2-2))=0
Отсюда
а) a(√2-1)-(3√2-2)=0
a=(3√2-2)/(√2-1)=((3√2-2)(√2+1))/((√2-1)*(√2+1))=4+√2
б) a(√2+1)-(3√2-2)=0
a=(3√2-2)/(√2+1)=((3√2-2)(√2-1))/((√2+1)(√2-1))=8-5√2
2) Точка касания (3+√2;3+√2)
Длина вектора (a - (3+√2); a - (3+√2)) равна a. Это значит, что (a - (3+√2))^2+(a - (3+√2))^2=a^2,
2((a - (3+√2))^2)-a^2=0,
(a√2-(3√2+2))^2-a^2=0,
(a(√2-1)-(3√2+2))(a(√2+1)-(3√2+2))=0.
Отсюда
а) a(√2-1)-(3√2+2)=0
a=(3√2+2)/(√2-1)=((3√2+2)(√2+1))/((√2-1)(√2+1))=8+5√2
б) a(√2+1)-(3√2+2)=0
a=(3√2+2)/(√2+1)=((3√2+2)(√2-1))/((√2-1)(√2+1))=4-√2
ответ: 4-√2, 4+√2, 8-5√2, 8+5√2.
4,4(22 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ