В прямоугольном параллелепипеде все грани - прямоугольники, все рёбра равны и перпендикулярны основаниям.
Формула диагонали квадрата d=a√2 ⇒
Диагональ АС основания равна 4√2
Из прямоугольного треугольника АА1С по т.Пифагора боковое ребро
АА1=√(А1С²-AC²)=√(81-32)=7 (ед. длины)
-------
Вариант решения.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
Измерениями прямоугольного параллелепипеда являются длины трех ребер, исходящих из одной его вершины. Отсюда следует:
D²=a²+b²+c², где а и b- стороны основания, с - боковое ребро.
По условию а=b=4. D=9
81=16+16+c² ⇒
c²=81-32=49
c=7 - длина бокового ребра.
ответ: Ну как то так: 1. Примем глубину второй скважины за х метров.
2. Тогда длину первой скважины примем за (х + 3,4) метра.
3. После того, как первую скважину углубили на на 21,6 метра, ее глубина составила (х + 3,4 + 21,6) метров.
4. После того, как вторую скважину углубили в 3 раза, ее глубина составила (3 * х) = 3х метров.
5. Запишем уравнение и узнаем глубину второй скважины, если в итоге они стали равны.
3х = х + 3,4 + 21,6;
3х = х + 25;
3х - х = 25;
2х = 25;
х = 25 / 2;
х = 12,5 метров.
6. Узнаем глубину первой скважины.
12,5 + 3,4 = 15,9 метра.
ответ: Глубина первой скважины 15,9 метра, второй 12,5 метров.