45=3+5+37=3+11+31=3+13+29=5+11+29=5+17+23
Пошаговое объяснение:
Пусть для определённости x<y<z данные три различных простых числа.
x+y+z=45
Количество чётных чисел в данной сумме чётно, так как 45 число нечётное. Чётное простое число 2 единственное. Из чего следует, что чётных простых чисел в данной сумме нет. Тогда 3≤x<y<z
x≥13⇒y>x≥13⇒y≥17⇒z=45-(x+y)≤45-(13+17)=15<y⇒x<13⇒x≤11
z=45-(x+y)<45-(3+5)=37
x={3; 5; 7; 11}
x=3⇒y+z=42;
(y;z)={(5;37);(11;31);(13;29)}
x=5⇒y+z=40;
(y;z)={(11;29);(17;23)}
x=7⇒y+z=38;
(y;z)=∅
x=11⇒y+z=34;
(y;z)=∅
Значить 45=3+5+37=3+11+31=3+13+29=5+11+29=5+17+23
Остальные варианты это перестановки найденных чисел. Всего 5·3!=30 вариантов.
|1-х²|+|х|=5
Выражение 1-x² обращается в 0 в точках х=1 и х=-1, а выражение х - в точке х=0
Эти три точки разбивают числовую прямую на четыре промежутка:
x<-1, -1<x<0, 0<x<1, x>1
Каждые эти промежутки надо рассматривать по отдельности:
Рассмотрим промежуток x<-1
В этом промежутке 1-х²<0 и x<0
Значит, |1-x²|=-(1-x²), а |x|=-x
Таким образом, на этом промежутке уравнение принимает вид:
-1+х²-х=5
Решив это уравнение, находим корни x=3 и х=-2. Значение х=3 не удовлетворяет условию x<-1, поэтому не является корнем уравнения.
Рассмотрим промежуток -1<x<0
В этом промежутке 1-х²>0, а x<0
Таким образом, на этом промежутке уравнение принимает вид:
1-х²-x=5
Это уравнение корней не имеет.
Рассмотрим промежуток 0<х<1
В этом промежутке 1-х²>0, а x>0
Таким образом, на этом промежутке уравнение принимает вид:
1-х²+х=5
Это уравнение корней не имеет.
Рассмотрим промежуток x>1
В этом промежутке 1-х²<0, а х>0
Таким образом, на этом промежутке уравнение принимает вид:
-1+х²+х=5
Решив это уравнение, находим корни х=2 и х=-3. Значение х=-3 не удовлетворяет условию х>1, поэтому не является корнем уравнения.
Следовательно, ответами являются х=2 и х=-2