М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Anuffka
Anuffka
08.12.2020 17:35 •  Математика

Выполни деление с остатком и проверт 3: 7; 15: 18;

👇
Ответ:
3:7=1(ост) 15:18=7(ост)
4,8(16 оценок)
Ответ:
valeriatomilov
valeriatomilov
08.12.2020
3:7=(ост.1)
15:18=(ост.7)
4,4(31 оценок)
Открыть все ответы
Ответ:
nbkmrf
nbkmrf
08.12.2020
Процессе решения практических расчётных задач довольно часто возникает необходимость вычисления корней разной степени. Обычно при программировании на ЭВМ для этой цели используются стандартные библиотечные функции вычисления логарифма и экспоненты или итерационные методы. Аналитические методы последовательных приближений, часто применяемые при вычислении арифметических корней, имеют универсальный характер, однако обладают некоторыми недостатками, одним из которых является зависимость времени вычисления от величины аргумента и от выбора первого приближения. Значительно лучшие характеристики при вычислении, например, квадратного корня, показывает метод, описанный в статье “Оригинальный метод извлечения квадратного корня” (www.hijos.ru/2012/04/25/), который можно отнести к группе методов “цифра за цифрой”. Особенность этого метода, основанного на свойстве суммы членов арифметической прогрессии нечётных чисел, заключается в получении на каждом циклически повторяющемся шаге одной верной цифры результата.

В ходе анализа данного метода возникла идея распространить его концепцию на процесс вычисления корней -й степени, а также провести численное исследование получаемых алгоритмов. Основанием для такого подхода является то обстоятельство, что последовательность нечётных чисел, используемая для вычисления квадратного корня — это не только арифметическая прогрессия с шагом , но, — главное в 
4,5(59 оценок)
Ответ:
wonder1337
wonder1337
08.12.2020

можно лучший ответ вот

Пошаговое объяснение:

а) Продолжаем прямую А1М до пересечения с продолжением ркбра В1В в точку Р.

Точка Р принадлежит и прямой А1Р(А1М) и плоскости ВВ1С1, поскольку прямая В1Р принадлежит этой плоскости. Значит точка Р т является искомой точкой.

б)Точки Р и С1 принадлежат и плоскости А1МС1 и плоскости ВВ1С1. Значит линия пересечения этих плоскостей - прямая С1Р.

в) Прямая С1Р пересекает ребро ВС в точке К.

Эта точка принадлежит и плоскости АВС и плоскости А1МС1. Точка М также принадлежит и плоскости АВС и плоскости А1МС1. Через эти две точки можно провести только одну прямую КМ и эта прямая - искомая линия.

г)  Соединив все имеющиеся точки получим искомую плоскость сечения МА1С1К.

2.

Продолжим прямую DM до пересечения с ребром ВС грани АВС. Получим точку Т, которая принадлежит плоскости ADT и плоскости АВС. Точки N и М  принадлежат плоскости ADT, так как лежат на прямых AD и DT.

Проведя прямые NM и АТ до их пересечения, получим точку Р, принадлежащую плоскостям АDТ и АВС и, естественно,   прямой MN и плоскости АВС. Соединив точки К и Р, получим точку Е на ребре ВС, принадлежащую плоскости АВС и  плоскости КМР. Проведя прямую ЕМ до пересечения с ребром DC, получим точку Q. Соединив точки K, N, Q и E, получим искомое сечение.

4,4(81 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ