S=(ad+bc)/2 * h, где h - это высота, опустим из b и из c в точки H и H1, так как это р/б трапеция, то AH * 2 + BC = 15, на рисунке увидеть просто, после найдём AH = 6. sinB=0.8, sinB=sin(90+ABH), где по формуле получим: sin(90 + abh) = sin90*cos(abh) + cin(abh)*cos90, так как cso90 = 0, а cin90 = 1, то это всё равно cosABH = sinB = 0.8, после sinABH = корень из (1 - cos^2(abh) ) получим sin(abh) = 0.6, sin(abh)=AB/AH, AB = 6/0.6 = 10, после по пифагору найдём BH, AB^2=AH^2+h^2, h = 8, после подставим в первую формулу и получим S = 9 * 8 = 72, решено
Пошаговое объяснение:
1) у=4 - х², ⇒ у=-х²+4 ⇒у=-х²+0х+4 , т.е. а=1, b=0, c=4;
найдём абсциссу вершины параболы по формуле х₀=-b/2a ⇒ х₀=0/2=0
х₀=0, значит y₀ = 4-0²=4
Значит вершина параболы (0; 4)
Нули функции: у=0, если 4-х²=0 ⇒х²=4 ⇒х=±2 (нули функции)
2) у=3(х+5)²-27⇒у=3(х²+10х+25)-27=3х²+30х+75 - 27=3х²+30х+48
у=3х²+30х+48 т.е. а=3, b=30, c=48;
найдём абсциссу вершины параболы по формуле х₀=-b/2a ⇒х₀=-30/(2·3)= - 5, тогда
х₀= -5 ⇒ y₀ = 3(-5+5)²-27= -27
Значит вершина параболы (-5; -27)
Хотя, если парабола задана формулой у=а(х-m)²+n, то числа m,n -координаты вершина параболы; у нас m=-5, n=-27⇒ вершина параболы (-5; -27)
y=0, если 3(х+5)²-27 = 0 ⇒3(х+5)²=27 ⇒(х+5)²=9⇒
х+5=3 и х+5=-3
х₁=-2 х₂=-8
Нули функции: х=-2 и х=-8