Умальчика достаточное количество двухкопеечных и трехкопеечных монет старого образца. как ты будешь использовать такие копейки, чтобы купить любимый шоколад?
У равнобедренного треугольника углы при основании равны. Так как при вершине углы a и b равны, то два других угла при основании равны: (180-a)/2 и (180-b)/2 т.к. а и b взаимозаменяемы, то все три угла оного треугольника равны трём углам второго треугольника. Т.е. треугольники подобны по трём углам. (Хотя достаточно и двух при основании.) Коэффициент подобия k=16/12=4/3 Найдём периметр большего треугольника P=16+10+10=36 см Найдём боковую сторону меньшего треугольника b=10/k b=10*3/4=7.5 см Найдём периметр меньшего треугольника P=12+7.5*2=27 см Периметры треугольников равны 36 см и 27 см
Уравнения с модулями решаются по следующему общему алгоритму: 1. Найти нули подмодульных выражений 4x-1 = 0 и x+3 = 0 x=1/4 и x = -3 2. Полученные нули разбивают координатную прямую на три промежутка: x>1/4, -3≤x≤1/4, x<-3. Будем раскрывать модули на каждом из промежутков. 1. x>1/4. Здесь оба подмодульных выражения положительны. Тогда: 4x-1+x+3=5 5x=3 x=3/5. Проверяем, дейстительно ли найденный корень принадлежит рассматриваемому промежутку. В нашем случае, да, принадлежит. 2. -3≤x≤1/4 На этом промежутке первое подмодульное выражение становится отрицательным, а второе остается положительным. Значит: -4x+1+x+3=5 -3x=1 x=-1/3 Опять проверяем, дейстительно ли найденный корень принадлежит рассматриваемому промежутку. В нашем случае, да, принадлежит.
3. x<-3. На этом промежутке оба подмодульных выражения становятся отрицательными: -4x+1-x-3=5 -5x=7 x=-7/5 Этот корень не принадлежит рассматриваемому промежутку, он посторонний, значит, на этом промежутке корней у нашего уравнения нет.
ответ: x=-1/3, x=3/5.
В приложенном файле графическая иллюстрация решения.